k8s中的Mysql数据库持久化存储

k8s中的Mysql数据库持久化存储,第1张

 

一、配置:

环境:

CentOS7 

VMware

笔者配置了四台虚拟机:

K8S-Master节点: 3GB内存   2核CPU   20GB硬盘空间

K8S-node1节点:  2GB内存   2核CPU   30GB硬盘空间

K8S-node2节点:  2GB内存   2核CPU   30GB硬盘空间

镜像仓库节点:      2GB内存   2核CPU   50GB硬盘空间

二、节点规划:

使用三台虚拟机搭建K8S集群,使用一台虚拟机搭建镜像仓库。

每台虚拟机配置两块网卡,其中一块为“NAT模式”,用于拉取镜像等功能。

另外一块网卡为“仅主机模式”,用于集群节点间的通信。归划如下:

K8s-master节点:

仅主机模式:10.10.10.200

NAT模式:  192.168.200.130

K8S-node1节点:

仅主机模式:10.10.10.201

NAT模式:  192.168.200.131

K8S-node2节点:

仅主机模式:10.10.10.202

NAT模式:  192.168.200.132

镜像仓库节点:

仅主机模式:10.10.10.101

NAT模式:  192.168.200.150

三、版本信息

Linux内核版本:

Linux version 3.10.0-862.el7.x86_64 (builder@kbuilder.dev.centos.org)

(gcc version 4.8.5 20150623 (Red Hat 4.8.5-28) (GCC) )

 #1 SMP Fri Apr 20 16:44:24 UTC 2018

K8s集群版本为1.15.0版本:

四、基于StatefulSet与PV/PVC的MySql持久化存储实验

1. 在每个节点安装nfs服务

在“镜像仓库”节点,执行以下命令:

yum install -y nfs-common nfs-utils rpcbind

在k8s集群,执行以下命令:

yum install -y nfs-utils rpcbind

2. 在“镜像仓库”节点下,配置nfs服务器

mkdir /nfs_mysql

Chmod 777 /nfs_mysql/

(在测试环境中,为了不考虑用户属性,暂时赋予777权限,但在生产环境不推荐这样做)

Chown nfsnobody /nfs_mysql/

echo “/nfs_mysql *(rw,no_root_squash,no_all_squash,sync)” >>/etc/exports

cat /etc/exports

/nfs_mysql *(rw,no_root_squash,no_all_squash,sync)

systemctl start rpcbind

systemctl start nfs

3. 测试nfs服务是否可用

mkdir /test

showmount -e 10.10.10.101

可见/nfs_mysql *已暴露于共享目录,接下来测试挂载是否可用:

在master节点下执行:

mount -t nfs 10.10.10.101:/nfs_mysql /test/

echo "hello-world">>/test/1.txt

在镜像仓库节点下查看1.txt是否存在,若存在则挂载成功:

可见nfs服务可以正常使用,接下来删除test目录和1.txt

在镜像仓库下:

[root@hub nfs_mysql]# rm -f 1.txt

在Master节点下:

[root@k8s-master ~]# umount /test/

[root@k8s-master ~]# rm -rf /test/

同理,依照以上步骤同时创建:(提供多个mysql副本进行挂载)

nfs_mysql1

nfs_mysql2

完成后需要重启nfs服务

systemctl restart rpcbind

systemctl restart nfs

最终效果:

4. 将nfs封装成pv

创建mysql_test文件夹,将yaml文件统一保存在此目录下

mkdir mysql_test

cd mysql_test

vim mysql-pv.yml

mysql-pv.yml配置如下:

apiVersion: v1

kind: PersistentVolume

metadata:

  name: mysql-pv

spec:

  capacity:

    storage: 5Gi

  accessModes:

    -  ReadWriteOnce

  persistentVolumeReclaimPolicy: Retain

  storageClassName: nfs

  nfs:

    path: /nfs_mysql

    server: 10.10.10.101

---

apiVersion: v1

kind: PersistentVolume

metadata:

  name: mysql-pv1

spec:

  capacity:

    storage: 5Gi

  accessModes:

    -  ReadWriteOnce

  persistentVolumeReclaimPolicy: Retain

  storageClassName: nfs

  nfs:

    path: /nfs_mysql1

    server: 10.10.10.101

---

apiVersion: v1

kind: PersistentVolume

metadata:

  name: mysql-pv2

spec:

  capacity:

    storage: 5Gi

  accessModes:

    -  ReadWriteOnce

  persistentVolumeReclaimPolicy: Retain

  storageClassName: nfs

  nfs:

    path: /nfs_mysql2

    server: 10.10.10.101

注意:

在k8s集群15版本中recycle回收策略已被删除,只能用retain策略或者Delete策略。这里我们使用 persistentVolumeReclaimPolicy: Retain

 

执行命令:

kubectl create -f mysql-pv.yml

kubectl get pv

如图所示,即为Pv创建成功。

5. 部署MySQL,在mysql_test目录下编写mysql.yml,配置文件如下

apiVersion: v1

kind: Service

metadata:

  name: mysql

  labels:

    app: mysql

spec:

  ports:

  - port: 3306

    name: mysql

  clusterIP: None

  selector:

    app: mysql

---

apiVersion: apps/v1

kind: StatefulSet

metadata:

  name: mysql

spec:

  selector:

    matchLabels:

      app: mysql

  serviceName: "mysql"

  replicas: 3

  template:

    metadata:

      labels:

        app: mysql

    spec:

      containers:

      - name: mysql

        image: mysql:5.6

        env:

        - name: MYSQL_ROOT_PASSWORD

          value: password

        ports:

        - containerPort: 3306

          name: mysql

        volumeMounts:

        - name: mysql-persistent-storage

          mountPath: /var/lib/mysql

  volumeClaimTemplates:

  - metadata:

      name: mysql-persistent-storage

    spec:

      accessModes: ["ReadWriteOnce"]

      storageClassName: "nfs"

      resources:

        requests:

          storage: 1Gi  

执行以下命令,部署mysql服务:

kubectl create -f mysql.yml

如图可知,mysql按StatefulSet依次创建了mysql-0 mysql-1 mysql-2

查看各个Pod部在哪个节点:

6. 通过创建临时容器,使用MySQL客户端发送测试请求给MySQL master节点

注意:

主机名为mysql-0.mysql;跨命名空间的话,主机名请使用mysql-0.mysql. [NAMESPACE_NAME].如果没有指定命名空间,默认为default,即 mysql-0.mysql. default。

   

这里笔者打算关闭node2节点来模拟node2宕机,来测试是否实现数据的持久化存储,

所以我们向node2上的mysql1写入数据。

 

执行以下命令,访问mysql1:

kubectl run mysql-client --image=mysql:5.6 -it --rm --restart=Never -- mysql -h mysql-1.mysql.default -p password

创建数据库demo,并向messages表中写入hello-world

CREATE DATABASE demo 

CREATE TABLE demo.messages (message VARCHAR(250)) 

INSERT INTO demo.messages VALUES ('hello-world')

如图所示

接下来我们来关闭k8s-node2虚拟机,模拟宕机

查看nodes的运行状态,可知node2的状态已转变为NotReady

一段时间后,k8s将Pod MySql -1迁移到节点k8s-node1

由于时间过长,笔者把三个Pod都删除重启后,验证数据:

MySQL服务恢复,数据完好无损!

MySQL 8.0 以前 auto_increment 无法持久化,MySQL 8.0支持 auto_increment 持久化。文档链接: https://dev.mysql.com/doc/refman/8.0/en/innodb-auto-increment-handling.html#innodb-auto-increment-notes

MySQL5.7 重启后 auto_increment 会重置成 max(id)+1。

pt-archiver 加了个逻辑:选择不归档(删除) max(id) 这一行数据,防止重启丢失 auto_increment 值。这个行为由 --safe-auto-increment 参数控制(默认)。如果要关闭这一逻辑,可以使用 --nosafe-auto-increment参数。这一度被认为是个 bug。

通常来说,当数据多、并发量大的时候,架构中可以引入Redis,帮助提升架构的整体性能,减少Mysql(或其他数据库)的压力,但不是使用Redis,就不用MySQL。

因为Redis的性能十分优越,可以支持每秒十几万此的读/写 *** 作,并且它还支持持久化、集群部署、分布式、主从同步等,Redis在高并发的场景下数据的安全和一致性,所以它经常用于两个场景:

缓存

判断数据是否适合缓存到Redis中,可以从几个方面考虑: 会经常查询么?命中率如何?写 *** 作多么?数据大小?

我们经常采用这样的方式将数据刷到Redis中:查询的请求过来,现在Redis中查询,如果查询不到,就查询数据库拿到数据,再放到缓存中,这样第二次相同的查询请求过来,就可以直接在Redis中拿到数据;不过要注意【缓存穿透】的问题。

缓存的刷新会比较复杂,通常是修改完数据库之后,还需要对Redis中的数据进行 *** 作;代码很简单,但是需要保证这两步为同一事务,或最终的事务一致性。

高速读写

常见的就是计数器,比如一篇文章的阅读量,不可能每一次阅读就在数据库里面update一次。

高并发的场景很适合使用Redis,比如双11秒杀,库存一共就一千件,到了秒杀的时间,通常会在极为短暂的时间内,有数万级的请求达到服务器,如果使用数据库的话,很可能在这一瞬间造成数据库的崩溃,所以通常会使用Redis(秒杀的场景会比较复杂,Redis只是其中之一,例如如果请求超过某个数量的时候,多余的请求就会被限流)。

这种高并发的场景,是当请求达到服务器的时候,直接在Redis上读写,请求不会访问到数据库;程序会在合适的时间,比如一千件库存都被秒杀,再将数据批量写到数据库中。

所以通常来说,在必要的时候引入Redis,可以减少MySQL(或其他)数据库的压力,两者不是替代的关系 。

我将持续分享Java开发、架构设计、程序员职业发展等方面的见解,希望能得到你的关注。

Redis和MySQL的应用场景是不同的。

通常来说,没有说用Redis就不用MySQL的这种情况。

因为Redis是一种非关系型数据库(NoSQL),而MySQL是一种关系型数据库。

和Redis同类的数据库还有MongoDB和Memchache(其实并没有持久化数据)

那关系型数据库现在常用的一般有MySQL,SQL Server,Oracle。

我们先来了解一下关系型数据库和非关系型数据库的区别吧。

1.存储方式

关系型数据库是表格式的,因此存储在表的行和列中。他们之间很容易关联协作存储,提取数据很方便。而Nosql数据库则与其相反,他是大块的组合在一起。通常存储在数据集中,就像文档、键值对或者图结构。

2.存储结构

关系型数据库对应的是结构化数据,数据表都预先定义了结构(列的定义),结构描述了数据的形式和内容。这一点对数据建模至关重要,虽然预定义结构带来了可靠性和稳定性,但是修改这些数据比较困难。而Nosql数据库基于动态结构,使用与非结构化数据。因为Nosql数据库是动态结构,可以很容易适应数据类型和结构的变化。

3.存储规范

关系型数据库的数据存储为了更高的规范性,把数据分割为最小的关系表以避免重复,获得精简的空间利用。虽然管理起来很清晰,但是单个 *** 作设计到多张表的时候,数据管理就显得有点麻烦。而Nosql数据存储在平面数据集中,数据经常可能会重复。单个数据库很少被分隔开,而是存储成了一个整体,这样整块数据更加便于读写

4.存储扩展

这可能是两者之间最大的区别,关系型数据库是纵向扩展,也就是说想要提高处理能力,要使用速度更快的计算机。因为数据存储在关系表中, *** 作的性能瓶颈可能涉及到多个表,需要通过提升计算机性能来克服。虽然有很大的扩展空间,但是最终会达到纵向扩展的上限。而Nosql数据库是横向扩展的,它的存储天然就是分布式的,可以通过给资源池添加更多的普通数据库服务器来分担负载。

5.查询方式

关系型数据库通过结构化查询语言来 *** 作数据库(就是我们通常说的SQL)。SQL支持数据库CURD *** 作的功能非常强大,是业界的标准用法。而Nosql查询以块为单元 *** 作数据,使用的是非结构化查询语言(UnQl),它是没有标准的。关系型数据库表中主键的概念对应Nosql中存储文档的ID。关系型数据库使用预定义优化方式(比如索引)来加快查询 *** 作,而Nosql更简单更精确的数据访问模式。

6.事务

关系型数据库遵循ACID规则(原子性(Atomicity)、一致性(Consistency)、隔离性(Isolation)、持久性(Durability)),而Nosql数据库遵循BASE原则(基本可用(Basically Availble)、软/柔性事务(Soft-state )、最终一致性(Eventual Consistency))。由于关系型数据库的数据强一致性,所以对事务的支持很好。关系型数据库支持对事务原子性细粒度控制,并且易于回滚事务。而Nosql数据库是在CAP(一致性、可用性、分区容忍度)中任选两项,因为基于节点的分布式系统中,很难全部满足,所以对事务的支持不是很好,虽然也可以使用事务,但是并不是Nosql的闪光点。

7.性能

关系型数据库为了维护数据的一致性付出了巨大的代价,读写性能比较差。在面对高并发读写性能非常差,面对海量数据的时候效率非常低。而Nosql存储的格式都是key-value类型的,并且存储在内存中,非常容易存储,而且对于数据的 一致性是 弱要求。Nosql无需sql的解析,提高了读写性能。

8.授权方式

大多数的关系型数据库都是付费的并且价格昂贵,成本较大(MySQL是开源的,所以应用的场景最多),而Nosql数据库通常都是开源的。

所以,在实际的应用环境中,我们一般会使用MySQL存储我们的业务过程中的数据,因为这些数据之间的关系比较复杂,我们常常会需要在查询一个表的数据时候,将其他关系表的数据查询出来,例如,查询某个用户的订单,那至少是需要用户表和订单表的数据。

查询某个商品的销售数据,那可能就会需要用户表,订单表,订单明细表,商品表等等。

而在这样的使用场景中,我们使用Redis来存储的话,也就是KeyValue形式存储的话,其实并不能满足我们的需要。

即使Redis的读取效率再高,我们也没法用。

但,对于某些没有关联少,且需要高频率读写,我们使用Redis就能够很好的提高整个体统的并发能力。

例如商品的库存信息,我们虽然在MySQL中会有这样的字段,但是我们并不想MySQL的数据库被高频的读写,因为使用这样会导致我的商品表或者库存表IO非常高,从而影响整个体统的效率。

所以,对于这样的数据,且有没有什么复杂逻辑关系(就只是隶属于SKU)的数据,我们就可以放在Redis里面,下单直接在Redis中减掉库存,这样,我们的订单的并发能力就能够提高了。

个人觉得应该站出来更正一下,相反的数据量大,更不应该用redis。

为什么?

因为redis是内存型数据库啊,是放在内存里的。

设想一下,假如你的电脑100G的资料,都用redis来存储,那么你需要100G以上的内存!

使用场景

Redis最明显的用例之一是将其用作缓存。只是保存热数据,或者具有过期的cache。

例如facebook,使用Memcached来作为其会话缓存。

总之,没有见过哪个大公司数据量大了,换掉mysql用redis的。

题主你错了,不是用redis代替MySQL,而是引入redis来优化。

BAT里越来越多的项目组已经采用了redis+MySQL的架构来开发平台工具。

如题主所说,当数据多的时候,MySQL的查询效率会大打折扣。我们通常默认如果查询的字段包含索引的话,返回是毫秒级别的。但是在实际工作中,我曾经遇到过一张包含10个字段的表,1800万+条数据,当某种场景下,我们不得不根据一个未加索引的字段进行精确查询的时候,单条sql语句的执行时长有时能够达到2min以上,就更别提如果用like这种模糊查询的话,其效率将会多么低下。

我们最开始是希望能够通过增加索引的方式解决,但是面对千万级别的数据量,我们也不敢贸然加索引,因为一旦数据库hang住,期间的所有数据库写入请求都会被放到等待队列中,如果请求是通过http请求发过来的,很有可能导致服务发生分钟级别的超时不响应。

经过一番调研,最终敲定的解决方案是引入redis作为缓存。redis具有运行效率高,数据查询速度快,支持多种存储类型以及事务等优势,我们把经常读取,而不经常改动的数据放入redis中,服务器读取这类数据的时候时候,直接与redis通信,极大的缓解了MySQL的压力。

然而,我在上面也说了,是redis+MySQL结合的方式,而不是替代。原因就是redis虽然读写很快,但是不适合做数据持久层,主要原因是使用redis做数据落盘是要以效率作为代价的,即每隔制定的时间,redis就要去进行数据备份/落盘,这对于单线程的它来说,势必会因“分心”而影响效率,结果得不偿失。

楼主你好,首先纠正下,数据多并不是一定就用Redis,Redis归属于NoSQL数据库中,其特点拥有高性能读写数据速度,主要解决业务效率瓶颈。下面就详细说下Redis的相比MySQL优点。( 关于Redis详细了解参见我近期文章:https://www.toutiao.com/i6543810796214813187/ )

读写异常快

Redis非常快,每秒可执行大约10万次的读写速度。

丰富的数据类型

Redis支持丰富的数据类型,有二进制字符串、列表、集合、排序集和散列等等。这使得Redis很容易被用来解决各种问题,因为我们知道哪些问题可以更好使用地哪些数据类型来处理解决。

原子性

Redis的所有 *** 作都是原子 *** 作,这确保如果两个客户端并发访问,Redis服务器能接收更新的值。

丰富实用工具 支持异机主从复制

Redis支持主从复制的配置,它可以实现主服务器的完全拷贝。

以上为开发者青睐Redis的主要几个可取之处。但是,请注意实际生产环境中企业都是结合Redis和MySQL的特定进行不同应用场景的取舍。 如缓存——热数据、计数器、消息队列(与ActiveMQ,RocketMQ等工具类似)、位 *** 作(大数据处理)、分布式锁与单线程机制、最新列表(如新闻列表页面最新的新闻列表)以及排行榜等等 可以看见Redis大显身手的场景。可是对于严谨的数据准确度和复杂的关系型应用MySQL等关系型数据库依然不可替。

web应用中一般采用MySQL+Redis的方式,web应用每次先访问Redis,如果没有找到数据,才去访问MySQL。

本质区别

1、mysql:数据放在磁盘 redis:数据放在内存。

首先要知道mysql存储在磁盘里,redis存储在内存里,redis既可以用来做持久存储,也可以做缓存,而目前大多数公司的存储都是mysql + redis,mysql作为主存储,redis作为辅助存储被用作缓存,加快访问读取的速度,提高性能。

使用场景区别

1、mysql支持sql查询,可以实现一些关联的查询以及统计;

2、redis对内存要求比较高,在有限的条件下不能把所有数据都放在redis;

3、mysql偏向于存数据,redis偏向于快速取数据,但redis查询复杂的表关系时不如mysql,所以可以把热门的数据放redis,mysql存基本数据。

mysql的运行机制

mysql作为持久化存储的关系型数据库,相对薄弱的地方在于每次请求访问数据库时,都存在着I/O *** 作,如果反复频繁的访问数据库。第一:会在反复链接数据库上花费大量时间,从而导致运行效率过慢;第二:反复地访问数据库也会导致数据库的负载过高,那么此时缓存的概念就衍生了出来。

Redis持久化

由于Redis的数据都存放在内存中,如果没有配置持久化,redis重启后数据就全丢失了,于是需要开启redis的持久化功能,将数据保存到磁盘上,当redis重启后,可以从磁盘中恢复数据。redis提供两种方式进行持久化,一种是RDB持久化(原理是将Reids在内存中的数据库记录定时dump到磁盘上的RDB持久化),另外一种是AOF(append only file)持久化(原理是将Reids的 *** 作日志以追加的方式写入文件)。

redis是放在内存的~!

数据量多少绝对不是选择redis和mysql的准则,因为无论是mysql和redis都可以集群扩展,约束它们的只是硬件(即你有没有那么多钱搭建上千个组成的集群),我个人觉得数据读取的快慢可能是选择的标准之一,另外工作中往往是两者同是使用,因为mysql存储在硬盘,做持久化存储,而redis存储在内存中做缓存提升效率。

关系型数据库是必不可少的,因为只有关系型数据库才能提供给你各种各样的查询方式。如果有一系列的数据会频繁的查询,那么就用redis进行非持久化的存储,以供查询使用,是解决并发性能问题的其中一个手段


欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/zaji/6094970.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-03-14
下一篇 2023-03-14

发表评论

登录后才能评论

评论列表(0条)

保存