启动分片功能 *** 作的数据库是什么

启动分片功能 *** 作的数据库是什么,第1张

启动分片功能 *** 作的数据库是MySQL数据库。数据库对象的体系结构可以从用户视角和系统视角查看,用户视角类似使用MySQL一样,可以创建多个数据库,在每个数据库下面创建多个数据表,而在系统视角一个用户实例对应一个集群,而集群对应的是物理的数据库,该数据库为分布式的大规模并行MPP架构,数据库会分片到不同的节点上,而每个分片对应着物理表,通过Partition实现分区,分片是一级分区,分区是二级分区。

mysql分库分表一般有如下场景

其中1,2相对较容易实现,本文重点讲讲水平拆表和水平拆库,以及基于mybatis插件方式实现水平拆分方案落地。

在 《聊一聊扩展字段设计》 一文中有讲解到基于KV水平存储扩展字段方案,这就是非常典型的可以水平分表的场景。主表和kv表是一对N关系,随着主表数据量增长,KV表最大N倍线性增长。

这里我们以分KV表水平拆分为场景

对于kv扩展字段查询,只会根据id + key 或者 id 为条件的方式查询,所以这里我们可以按照id 分片即可

分512张表(实际场景具体分多少表还得根据字段增加的频次而定)

分表后表名为kv_000 ~ kv_511

id % 512 = 1 .... 分到 kv_001,

id % 512 = 2 .... 分到 kv_002

依次类推!

水平分表相对比较容易,后面会讲到基于mybatis插件实现方案

场景:以下我们基于博客文章表分库场景来分析

目标:

表结构如下(节选部分字段):

按照user_id sharding

假如分1024个库,按照user_id % 1024 hash

user_id % 1024 = 1 分到db_001库

user_id % 1024 = 2 分到db_002库

依次类推

目前是2个节点,假如后期达到瓶颈,我们可以增加至4个节点

最多可以增加只1024个节点,性能线性增长

对于水平分表/分库后,非shardingKey查询首先得考虑到

基于mybatis分库分表,一般常用的一种是基于spring AOP方式, 另外一种基于mybatis插件。其实两种方式思路差不多。

为了比较直观解决这个问题,我分别在Executor 和StatementHandler阶段2个拦截器

实现动态数据源获取接口

测试结果如下

由此可知,我们需要在Executor阶段 切换数据源

对于分库:

原始sql:

目标sql:

其中定义了三个注解

@useMaster 是否强制读主

@shardingBy 分片标识

@DB 定义逻辑表名 库名以及分片策略

1)编写entity

Insert

select

以上顺利实现mysql分库,同样的道理实现同时分库分表也很容易实现。

此插件具体实现方案已开源: https://github.com/bytearch/mybatis-sharding

目录如下:

mysql分库分表,首先得找到瓶颈在哪里(IO or CPU),是分库还是分表,分多少?不能为了分库分表而拆分。

原则上是尽量先垂直拆分 后 水平拆分。

以上基于mybatis插件分库分表是一种实现思路,还有很多不完善的地方,

例如:


欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/zaji/6161577.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-03-16
下一篇 2023-03-16

发表评论

登录后才能评论

评论列表(0条)

保存