如何在mysql大数据量表中增加一个字段

如何在mysql大数据量表中增加一个字段,第1张

1. 能不加字段就不要加, 能不修改字段就不要修改, 能不删除字段就不要删除, 等等为什么要删除字段呢? 如果没事,不要蛋疼的找事。 实际上,我们那次更新失败后, 我们并没有增加那个字段, 然后我们一直运行到今天, 但是后来还是增加了其他字段

2. 增加字段的情况下, 如果可以通过增加一个新的表来增加这个字段, 那么就增加一个新的表, 通过cache 或 程序来实现join 的效果

3. 如果能停机, 并且停机的时间在你容忍范围之内, 数据备份之后停机来做。 如果是主从备份,做这样大的 *** 作的时候,停掉主从备份, 万一你挂了, 备份数据库可以救你。 等到一切安全了, 重启主从备份;

4. 如果上面都不行, 这个字段还是要改,要加, 需要用到下面的方法, 也是扇贝网正在使用的方法;

修改大数据表的方法:

1. 被修改的表 Table A 需要有一个记录时间戳的字段, 这个时间戳就是每次数据更新,都会更新的字段, 这个字段需要有索引,在django里可以使用 auto_now=True

2. 创建一个新的临时表 Table B, 不是tmp_table, 是一个新的表,但是是临时使用的。 这个表和要修改的表拥有一模一样的数据结构, 加上你要修改的部分, 比如增加的字段;

3. 记录下Table A 的索引

4. 删除 Table B 的全部索引

5. 把Table A 的数据全部复制到Table B, 是不是执行 INSERT INTO B(field1, field2) SELECT field1, field2 FROM A? 当然不是, 这么做不还是锁死了Table A 么, 这里的迁移就是一个需要细分的地方,需要写一个脚本, 让程序每次读取比如5000条数据出来, 插入到Table B里面, 因为Table B 是没有索引的, 所以要当心不要使用多进程来做; 如果是多进程, 要确保插入到B的时候是不会有重复数据的; 如果是1000万的数据,每次5000条, 假设这个 *** 作需要500ms, 那么 2000*200ms = 16 分钟。 这只是一个估值, 具体情况和服务器当时的情况有关, 不好细说。 另外, 我们要记录这个迁移开始的时间点,记为t1

6. 那么这个时候Table A 的数据是不是都进入了Table B 呢, 应当说差不多大部分都进入了, 但5中说, 这大概需要16分钟, 这么长的时间里, 可能有新的数据进入了, 也有可能已有的数据发生了更新, 所以我们要把Table A 中在t1 之后发生变化的数据查找出来, 然后更新到Table B 中, 我们的做法是:

记录这个 *** 作对应的时间点 t2

BEGIN

DELETE FROM B WHERE updated_time >t1

INSERT INTO B(field1, field2) SELECT field1, field2 FROM A WHERE updated_time >t1

COMMIT

7. 现在A 和 B 差不多该同步了吧? 差不多了, 但是6 执行完之后, A仍然在写, 子子孙孙无穷尽也 ... , 但这个时候 A 和 B 的差异已经非常非常小了, 所以在下一步,我们在一个transaction 里执行下面的 *** 作:

BEGIN

DELETE FROM B WHERE updated_time >t2

INSERT INTO B(field1, field2) SELECT field1, field2 FROM A WHERE updated_time >t2

ALTER TABLE A RENAME TO C

ALTER TABLE B RENAME TO A

COMMIT

8. Done

PS: 如果A表没有时间戳, 实际上没有先见之明的人大概不会想到要预留一个时间戳的字段, 那么几乎是没有办法快速比较两个表的差异的, 这个时候我选择的做法就是放弃修改的数据, 只管新的数据了, 所以只要把t1, t2 换成id 就可以了, 这样delete 语句也省略了, 因为没啥好delete的;

千万不要想着根据ID 来JOIN 然后更新B表的字段来补齐新的数据, 如果能把两个千万级别的表JOIN起来, 内存有多大呢?

9. 上面的解决方案是我们第二次尝试之后犯下了一个巨大的错误,这个错误导致网站瘫痪了大概20分钟, 如果你和我一样没有发现问题,那么这就是悲剧的地方。 问题就在于我是根据上面的PS来 *** 作的, 然后B就华丽地变成了A. B 表至今身上是没有索引的, 立即悲剧。 所以应当在第5步之后按照A的索引为B建立索引, 待索引全部好了之后, 再继续6。 如果不是走PS这条路, 而是有时间戳的字段的话, 在6的时候会发现这个问题, 因为那条Delete 慢的超出想像, 会明白这里是有问题的

ID已经设为主键了

200万的表跟4万的表,除非你系统的硬盘、内存、CPU配置特低,否则,效率上不至于你说的那么慢的(我普通的台式机CPU为1.5G的都不至于那么慢)

肯定有优化的余地,hi我吧

提问:如何设计或优化千万级别的大表?此外无其他信息,个人觉得这个话题有点范,就只好简单说下该如何做,对于一个存储设计,必须考虑业务特点,收集的信息如下:

1.数据的容量:1-3年内会大概多少条数据,每条数据大概多少字节;

2.数据项:是否有大字段,那些字段的值是否经常被更新;

3.数据查询SQL条件:哪些数据项的列名称经常出现在WHERE、GROUP BY、ORDER BY子句中等;

4.数据更新类SQL条件:有多少列经常出现UPDATE或DELETE 的WHERE子句中;

5.SQL量的统计比,如:SELECT:UPDATE+DELETE:INSERT=多少?

6.预计大表及相关联的SQL,每天总的执行量在何数量级?

7.表中的数据:更新为主的业务 还是 查询为主的业务

8.打算采用什么数据库物理服务器,以及数据库服务器架构?

9.并发如何?

10.存储引擎选择InnoDB还是MyISAM?

大致明白以上10个问题,至于如何设计此类的大表,应该什么都清楚了!

至于优化若是指创建好的表,不能变动表结构的话,那建议InnoDB引擎,多利用点内存,减轻磁盘IO负载,因为IO往往是数据库服务器的瓶颈。

另外对优化索引结构去解决性能问题的话,建议优先考虑修改类SQL语句,使他们更快些,不得已只靠索引组织结构的方式,当然此话前提是, 索引已经创建的非常好,若是读为主,可以考虑打开query_cache, 以及调整一些参数值:sort_buffer_size,read_buffer_size,read_rnd_buffer_size,join_buffer_siz。

更多信息参见:

MySQL数据库服务器端核心参数详解和推荐配置

不纸上谈兵,说一下我的思路以及我的解决,抛砖引玉了

我最近正在解决这个问题

我现在的公司有三张表,是5亿的数据,每天张表每天的增量是100w

每张表大概在10个columns左右

下面是我做的测试和对比

1.首先看engine,在大数据量情况下,在没有做分区的情况下

mysiam比innodb在只读的情况下,效率要高13%左右

2.在做了partition之后,你可以去读一下mysql的官方文档,其实对于partition,专门是对myisam做的优化,对于innodb,所有的数据是存在ibdata里面的,所以即使你可以看到schema变了,其实没有本质的变化

在分区出于同一个physical disk下面的情况下,提升大概只有1%

在分区在不同的physical disk下,我分到了三个不同的disks下,提升大概在3%,其实所谓的吞吐量,由很多因素决定的,比如你的explain parition时候可以看到,record在那一个分区,如果每个分区都有,其实本质上没有解决读的问题,这样只会提升写的效率。

另外一个问题在于,分区,你怎么分,如果一张表,有三个column都是经常被用于做查询条件的,其实是一件很悲惨的事情,因为你没有办法对所有的sql做针对性的分区,如果你只是如mysql官方文档上说的,只对时间做一个分区,而且你也只用时间查询的话,恭喜你

3.表主要用来读还是写,其实这个问题是不充分的,应该这样问,你在写入的时候,同时并发的查询多么?我的问题还比较简单,因为mongodb的 shredding支持不能,在crush之后,还是回到mysql,所以在通常情况下,9am-9pm,写入的情况很多,这个时候我会做一个 view,view是基于最近被插入或者经常被查询的,通过做view来分离读取,就是说写是在table上的,读在进行逻辑判断前是在view上 *** 作的

4做一些archive table,比如先对这些大表做很多已有的统计分析,然后通过已有的分析+增量来解决

5如果你用mysiam,还有一个问题你要注意,如果你的.configure的时候,加了一个max index length参数的时候,当你的record数大于制定长度的时候,这个index会被disable


欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/zaji/7164857.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-04-02
下一篇 2023-04-02

发表评论

登录后才能评论

评论列表(0条)

保存