一般用法:select count(*) from sql(sql语言)as name(别名)
select count(*) table_name
这里对count(1)和count(*)作对比
一般情况下,count(1)和count(*)返回的数据是相同的。
而效率方面也差不多。只是在有主键的情况下,count(*)是最快的。
两者都是记录null的行数
select count(a) from test
-- 扫描a列的数据记录数,如果a上没有索引,则效率最差,并且如果a列包含null,则不会计数
2020-03-01
对于count的函数的使用,我们常见的一个错误是在括号内随意指定一个列去统计结果集的行数。但只有指定的行确实都是有值的时候,统计的才是实际的行数,否则可能统计的结果并不是实际的行数。而对于MyISAM存储引擎,如果某一列的值确实不可能为null时,MySQL内部就会将count()函数优化成count(*),若没有带where条件,此时计算速度是非常快的,因为此时没有实际的去计算表的行数。
总结: 对于MyISAM存储引擎,不带where条件的count(*)是非常快的。
技巧:
利用上述MyISAM的count(* )特性,加速一些特定查询条件的count()查询。
如:
对于select count(* ) from tablename where id >10可以做如下的反转查询:
select (select count(* ) from tablename) - count(* ) from tablename where id <10
因为这样在查询阶段MySQL将子查询当做一个常数来处理,大大减少了扫描的行数。
在统计数据的需求中很容易出现按照天来统计数据的场景,有时某一列的维度在那天并没有产生数据,但是又没有一列是可以确保每天都是有数据的,由于mysql中并没有fulljoin这样的关联方式,在这种情况下关联查询就有些费劲,解决的办法也是多种多样,毕竟条条大路通罗马嘛,其他的就不说了,这里介绍一种相对方便的方法。
产生一个足够长的时间列,这个列要能够包含想要统计的所有日期。这个思路的实现很泛,可以创建一个日期的临时表,然后将想要查的日期插入,抛开创建表比较麻烦之外,一般在职能比较完善的公司,生产环境创建表或者修改数据是需要交给专门的DBA去 *** 作的,各种流程。。。相对这个较简单的一种方式就是创建存储过程,然后产生时间列,这也是一种解决办法。
我的思路是先定义一个时间变量并初始化,然后和某个数据足够多的表关联查询获取时间列,这个表一般选取某张要查的表即可,数据条数只要超过需要查询的条数即可,足够即可,太多就是浪费,降低查询效率。
比如说我要查询2018-01-10到2018-01-20每天的数据,那么就可以写成
其中,cdate是我定义的一个时间变量,初始化的值是2018-01-09,因为在外面那部分执行之后值已经加1了,已经不是2018-01-10了;data_t是我关联产生记录的实体表,这个表只有一个要求,就是能帮我们产生足够的时间列条数,后面的limit 15是帮助我产生15条时间记录,可以换成其他条件;生成的t0其实就是15条全为2018-01-09的记录,外面的查询在每扫描一条t0的记录就会加1天,这样就会产生连续的时间列;WHERE后面是最终查询的截止条件,换成其他的也可以。
关联其他表举例:
查询从2018-01-10到当前日期每天的统计数据
通过上面的例子我想大部分人应该可以灵活变化了,比如查询多少天内每天的统计数据,某几个月内每月的统计数据等等,通过修改上面给的例子里面的sql完全可以做到,可以说这种思路就是个‘万能模板’,希望本文能够帮到大家。
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)