mysql分片,表关联查询的sql怎么写

mysql分片,表关联查询的sql怎么写,第1张

以每24小时作为一份时间(而非自然日),根据用户的配置有两种工作模式:带状模式中,用户仅定义开始日期时,从开始日期(含)开始,每份时间1个分片地无限增加下去;环状模式中,用户定义了开始日期和结束日期时,以结束日期(含)和开始日期(含)之间的时间份数作为分片总数(分片数量固定),以类似取模的方式路由到这些分片里。

1. DBLE 启动时,读取用户在 rule.xml 配置的 sBeginDate 来确定起始时间

2. 读取用户在 rule.xml 配置的 sPartionDay 来确定每个 MySQL 分片承载多少天内的数据

3. 读取用户在 rule.xml 配置的 dateFormat 来确定分片索引的日期格式

4. 在 DBLE 的运行过程中,用户访问使用这个算法的表时,WHERE 子句中的分片索引值(字符串),会被提取出来尝试转换成 Java 内部的时间类型

5. 然后求分片索引值与起始时间的差,除以 MySQL 分片承载的天数,确定所属分片

1. DBLE 启动时,读取用户在 rule.xml 配置的起始时间 sBeginDate、终止时间 sEndDate 和每个 MySQL 分片承载多少天数据 sPartionDay

2. 根据用户设置,建立起以 sBeginDate 开始,每 sPartionDay 天一个分片,直到 sEndDate 为止的一个环,把分片串联串联起来

3. 读取用户在 rule.xml 配置的 defaultNode

4. 在 DBLE 的运行过程中,用户访问使用这个算法的表时,WHERE 子句中的分片索引值(字符串),会被提取出来尝试转换成 Java 内部的日期类型

5. 然后求分片索引值与起始日期的差:如果分片索引值不早于 sBeginDate(哪怕晚于 sEndDate),就以 MySQL 分片承载的天数为模数,对分片索引值求模得到所属分片;如果分片索引值早于 sBeginDate,就会被放到 defaultNode 分片上

与MyCat的类似分片算法对比

中间件

DBLE

MyCat

分片算法种类 date 分区算法 按日期(天)分片

两种中间件的取模范围分片算法使用上无差别

开发注意点

【分片索引】1. 必须是字符串,而且 java.text.SimpleDateFormat 能基于用户指定的 dateFormat 来转换成 java.util.Date

【分片索引】2. 提供带状模式和环状模式两种模式

【分片索引】3. 带状模式以 sBeginDate(含)起,以 86400000 毫秒(24 小时整)为一份,每 sPartionDay 份为一个分片,理论上分片数量可以无限增长,但是出现 sBeginDate 之前的数据而且没有设定 defaultNode 的话,会路由失败(如果有 defaultNode,则路由至 defaultNode)

【分片索引】4. 环状模式以 86400000 毫秒(24 小时整)为一份,每 sPartionDay 份为一个分片,以 sBeginDate(含)到 sEndDate(含)的时间长度除以单个分片长度得到恒定的分片数量,但是出现 sBeginDate 之前的数据而且没有设定 defaultNode 的话,会路由失败(如果有 defaultNode,则路由至 defaultNode)

【分片索引】5. 无论哪种模式,分片索引字段的格式化字符串 dateFormat 由用户指定

【分片索引】6. 无论哪种模式,划分不是以日历时间为准,无法对应自然月和自然年,且会受闰秒问题影响

运维注意点

【扩容】1. 带状模式中,随着 sBeginDate 之后的数据出现,分片数量的增加无需再平衡

【扩容】2. 带状模式没有自动增添分片的能力,需要运维手工提前增加分片;如果路由策略计算出的分片并不存在时,会导致失败

【扩容】3. 环状模式中,如果新旧 [sBeginDate,sEndDate] 之间有重叠,需要进行部分数据迁移;如果新旧 [sBeginDate,sEndDate] 之间没有重叠,需要数据再平衡

配置注意点

【配置项】1. 在 rule.xml 中,可配置项为 <propertyname="sBeginDate">、 <propertyname="sPartionDay">、 <propertyname="dateFormat">、 <propertyname="sEndDate">和 <propertyname="defaultNode">

【配置项】2.在 rule.xml 中配置 <propertyname="dateFormat">,符合 java.text.SimpleDateFormat 规范的字符串,用于告知 DBLE 如何解析sBeginDate和sEndDate

【配置项】3.在 rule.xml 中配置 <propertyname="sBeginDate">,必须是符合 dateFormat 的日期字符串

【配置项】4.在 rule.xml 中配置 <propertyname="sEndDate">,必须是符合 dateFormat 的日期字符串;配置了该项使用的是环状模式,若没有配置该项则使用的是带状模式

【配置项】5.在 rule.xml 中配置 <propertyname="sPartionDay">,非负整数,该分片策略以 86400000 毫秒(24 小时整)作为一份,而 sPartionDay 告诉 DBLE 把每多少份放在同一个分片

【配置项】6.在 rule.xml 中配置 <propertyname="defaultNode">标签,非必须配置项,不配置该项的话,用户的分片索引值没落在 mapFile 定义

当分片索引不是纯整型的字符串时,只接受整型的内置 hash 算法是无法使用的。为此,stringhash 按照用户定义的起点和终点去截取分片索引字段中的部分字符,根据当中每个字符的二进制 unicode 值换算出一个长整型数值,然后就直接调用内置 hash 算法求解分片路由:先求模得到逻辑分片号,再根据逻辑分片号直接映射到物理分片。

用户需要在 rule.xml 中定义 partitionLength[] 和 partitionCount[] 两个数组和 hashSlice 二元组。

在 DBLE 的启动阶段,点乘两个数组得到模数,也是逻辑分片的数量

并且根据两个数组的叉乘,得到各个逻辑分片到物理分片的映射表(物理分片数量由 partitionCount[] 数组的元素值之和)

此外根据 hashSlice 二元组,约定把分片索引值中的第 4 字符到第 5 字符(字符串以 0 开始编号,编号 3 到编号 4 等于第 4 字符到第 5 字符)字符串用于 “字符串->整型”的转换

在 DBLE 的运行过程中,用户访问使用这个算法的表时,WHERE 子句中的分片索引值会被提取出来,取当中的第 4 个字符到第 5 字符,送入下一步

设置一个初始值为 0 的累计值,逐个取字符,把累计值乘以 31,再把这个字符的 unicode 值当成长整型加入到累计值中,如此类推直至处理完截取出来的所有字符,此时的累计值就能够代表用户的分片索引值,完成了 “字符串->整型” 的转换

对上一步的累计值进行求模,得到逻辑分片号

再根据逻辑分片号,查映射表,直接得到物理分片号

与MyCat的类似分片算法对比

请点击输入图片描述

两种算法在string转化为int之后,和 hash 分区算法相同,区别也继承了 hash 算法的区别。

开发注意点

【分片索引】1. 必须是字符串

【分片索引】2. 最大物理分片配置方法是,让 partitionCount[] 数组和等于 2880

例如:

<property name="partitionLength">1</property><property name="partitionCount">2880</property>

<property name="partitionLength">1,1</property><property name="partitionCount">1440,1440</property>

【分片索引】3. 最小物理分片配置方法是,让 partitionCount[] 数组和等于 1

例如

<property name="partitionLength">2880</property><property name="partitionCount">1</property>

【分片索引】4. partitionLength 和 partitionCount 被当做两个逗号分隔的一维数组,它们之间的点乘必须在 [1, 2880] 范围内

【分片索引】5. partitionLength 和 partitionCount 的配置对顺序敏感

<property name="partitionLength">512,256</property><property name="partitionCount">1,2</property>

<property name="partitionLength">256,512</property><property name="partitionCount">2,1</property>

是不同的分片结果

【分片索引】6. 分片索引字段长度小于用户指定的截取长度时,截取长度会安全减少到符合分片索引字段长度

【数据分布】1. 分片索引字段截取越长则越有利于数据均匀分布

【数据分布】2. 分片索引字段的内容重复率越低则越有利于数据均匀分布

运维注意点

【扩容】1. 预先过量分片,并且不改变 partitionCount 和 partitionLength 点乘结果,也不改变截取设置 hashSlice 时,可以避免数据再平衡,只需进行涉及数据的迁移

【扩容】2. 若需要改变 partitionCount 和 partitionLength 点乘结果或改变截取设置 hashSlice 时,需要数据再平衡

【缩容】1. 预先过量分片,并且不改变 partitionCount 和 partitionLength 点乘结果,也不改变截取设置 hashSlice 时,可以避免数据再平衡,只需进行涉及数据的迁移

【缩容】2. 若需要改变 partitionCount 和 partitionLength 点乘结果或改变截取设置 hashSlice 时,需要数据再平衡

配置注意点

【配置项】1. 在 rule.xml 中,可配置项为 <property name="partitionLength">  、<property name="partitionCount">和 <property name="hashSlice">

【配置项】2.在 rule.xml 中配置 <property name="partitionLength"> 标签

内容形式为:<物理分片持有的虚拟分片数>[,<物理分片持有的虚拟分片数>,...<物理分片持有的虚拟分片数>]

物理分片持有的虚拟分片数必须是整型,物理分片持有的虚拟分片数从左到右与同顺序的物理分片数对应,partitionLength 和partitionCount 的点乘结果必须在 [1, 2880] 范围内

【配置项】3. 在 rule.xml 中配置 <property name="partitionCount"> 标签内容形式为:<物理分片数>[,<物理分片数>,...<物理分片数>]

其中物理分片数必须是整型,物理分片数按从左到右的顺序与同顺序的物理分片持有的虚拟分片数对应,物理分片的编号从左到右连续递进,partitionLength 和 partitionCount 的点乘结果必须在 [1, 2880] 范围内

【配置项】4. partitionLength 和 partitionCount 的语义是:持有partitionLength[i] 个虚拟分片的物理分片有 partitionCount[i] 个

例如

<property name="partitionLength">512,256</property><property name="partitionCount">1,2</property>

语义是持有 512 个逻辑分片的物理分片有 1 个,紧随其后,持有 256 个逻辑分片的物理分片有 2 个

【配置项】5.partitionLength 和 partitionCount 都对书写顺序敏感,

例如

<property name="partitionLength">512,256</property><property name="partitionCount">1,2</property>

分片结果是第一个物理分片持有头512个逻辑分片,第二个物理分片持有紧接着的256个逻辑分片,第三个物理分片持有最后256个逻辑分片,相对的

<property name="partitionLength">256,512</property><property name="partitionCount">2,1</property>

分片结果则是第一个物理分片持有头 256 个逻辑分片,第二个物理分片持有紧接着的 256 个逻辑分片,第三个物理分片持有最后 512 个逻辑分片

【配置项】6.partitionLength[] 的元素全部为 1 时,这时候partitionCount 数组和等于 partitionLength 和 partitionCount 的点乘,物理分片和逻辑分片就会一一对应,该分片算法等效于直接取余

【配置项】7.在 rule.xml 中配置标签,从分片索引字段的第几个字符开始截取到第几个字符:

若希望从首字符开始截取 k 个字符( k 为正整数),配置的内容形式可以为“ 0 : k ”、“ k ”或“ : k ”;

若希望从末字符开始截取 k 个字符( k 为正整数),则配置的内容形式可以为“ -k : 0 ”、“ -k ”或“ -k : ”;

若希望从头第 m 个字符起算截取 n 个字符( m 和 n 都是正整数),则先计算出 i = m - 1 和 j = i + n - 1,配置的内容形式为“ i : j ”;

若希望从尾第 m 个字符起算截取从尾算起的 n 个字符( m 和 n 都是正整数),则先计算出 i = -m + n - 1,配置的内容形式可以为“ -m : i ”;

若希望不截取,则配置的内容形式可以为“ 0 : 0 ”、“ 0 : ”、“ : 0 ”或 “ : ”

当数据库表中数据量能够被预测到将会非常大,或者已经拥有庞大的数据时,我们应该选择分表或者分区(即使用多个数据库)来解决数据访问时的性能问题。如果单机的cpu能够承受站点的并发数,应该选择分表的方式,因为分表相对简单,容易实现scale,而且涉及到多表连接时,分区是不能直接使用join的。但如果站点并发数太大,需要多个cpu来访问多个数据库是无疑的,这时需要选择分区的方式。


欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/zaji/7321277.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-04-04
下一篇 2023-04-04

发表评论

登录后才能评论

评论列表(0条)

保存