页分裂:B+树的插入可能会引起数据页的分裂,删除可能会引起数据页的合并,二者都是比较重的IO消耗,所以比较好的方式是顺序插入数据,这也是我们一般使用自增主键的原因之一。
页分裂逆过程:页合并,当删除数据后,相邻的两个数据页利用率很低的时候会做数据页合并
主键索引:key:主键,value:数据页,存储每行数据
非主键索引:key:非主键索引,value:主键key,导致回表
最左匹配:优先将区分度高的列放到前面,这样可以高效索引,
最左匹配原则遇到范围查询就停止匹配,范围查询(>、<、between、like)为什么?因为出现范围匹配后,后面的索引字段无法保证有序,局部有序失去,顺序失去则无法提高查询效率
SELECT * FROM table WHERE a IN (1,2,3) and b >1
如何建立索引?
还是对(a,b)建立索引,因为IN在这里可以视为等值引用,不会中止索引匹配,所以还是(a,b)!
索引组织表
索引用页存储:key【10】-point【6】,通过调整key大小,当页大小固定的情况下,通过调整key大小,使得N叉树变化;
如key 10, point 6则单个索引16字节,页大小为16k,则页面总共可以存储1024个索引,即N大小
覆盖索引: 二级索引的信息已经存在想要的列,例如主键
如果现在有一个高频请求,要根据市民的身份z号查询他的姓名,这个联合索引就有意义了。它可以在这个高频请求上用到覆盖索引,不再需要回表查整行记录,减少语句的执行时间。
索引下推优化:可以在索引遍历过程中,对索引中包含的字段先做判断,直接过滤掉不满足条件的记录,减少回表次数。
整理索引碎片,重建表:alter table T engine=InnoDB
首先是看key的大小,另外是数据页的大小,如果需要改变N,则需要从这两个方面做改动;
一个innoDB引擎的表,数据量非常大,根据二级索引搜索会比主键搜索快,文章阐述的原因是主键索引和数据行在一起,非常大搜索慢,我的疑惑是:通过普通索引找到主键ID后,同样要跑一边主键索引,对于使用覆盖索引的情况下,使用覆盖索引可以直接解决问题
https://blog.csdn.net/itworld123/article/details/115144202
https://time.geekbang.org/column/article/69236
https://zhuanlan.zhihu.com/p/334684710
https://www.cxyzjd.com/article/pyzhizhuren/88431380
https://www.jianshu.com/p/4277d9dd0a9f
https://www.cnblogs.com/rjzheng/p/12557314.html
https://mengkang.net/1302.html
https://note.cser.club/database/bi-xu-le-jie-de-mysql-san-da-ri-zhi-binlogredo-log-he-undo-log
https://cloud.tencent.com/developer/news/44861
引入一个面试问题:
看完以下以后再回顾,会发现迎刃而解
Mysql 可以为每一张表设置 存储引擎 这里我们只说 InnoDB 存储引擎.
由于实际情况,数据页只能按照一棵 B+树 进行排序, 因此每张表只能拥有一个 聚集索引(即 主键)。
栗子:
每个叶子节点的索引行中包含了一个书签(bookmark). 该书签是用来告诉 InnoDB存储引擎哪里可以找到该索引对应的数据行或者说 行数据! 由于InnoDB存储引擎表, 是按照主键来构建的, 所以 ,该书签内其实包含或者说指向了 数据行所对应的聚集索引键
也就是说 辅助索引的 叶结点保存了 指向对应数据的 聚集索引, 可以通过该聚集索引 找到对应的数据行
辅助索引的存在并不影响数据在聚集索引中的组织,因为每张表上可以有多个辅助索引。
当通过辅助索引来寻找数据时,InnoDB 存储引擎会遍历辅助索引并通过叶级别的指针获得指向主键索引(聚集索引)的主键,然后再通过聚集索引找到一个完整的数据行。
例如:
聚集索引辅助索引关系:
: 又叫做组合索引 , 辅助索引的一种 , 和普通创建索引的方式一样,不同的是 可以同时添加多列来作为索引项
从本质上来说,联合索引也是一课B+树
个人理解: 所谓最左原则, 是因为 存储引擎构建组合索引时 是根据最左边的那一列索引项进行排序的 ,所以使用组合索引,必须满足 条件中必须存在 最左边那一列的索引项,这样 才可以找到对应的索引,继而 去寻找对应的数据
: 又叫做 索引覆盖,InnoDB中支持覆盖索引,即 从辅助索引中就可以得到查询的记录,而不需要查询聚集索引中的记录。
比如 这里没有根据最左原则使用组合索引,但是 优化器依然进行选择
共勉,欢迎指导谢谢~
五 索引分类
直接创建索引和间接创建索引
直接创建索引 CREATE INDEX mycolumn_index ON mytable (myclumn)
间接创建索引 定义主键约束或者唯一性键约束 可以间接创建索引
普通索引和唯一性索引
普通索引 CREATE INDEX mycolumn_index ON mytable (myclumn)
唯一性索引 保证在索引列中的全部数据是唯一的 对聚簇索引和非聚簇索引都可以使用
CREATE UNIQUE COUSTERED INDEX myclumn_cindex ON mytable(mycolumn)
单个索引和复合索引
单个索引 即非复合索引
复合索引 又叫组合索引 在索引建立语句中同时包含多个字段名 最多 个字段
CREATE INDEX name_index ON username(firstname lastname)
聚簇索引和非聚簇索引(聚集索引 群集索引)
聚簇索引 物理索引 与基表的物理顺序相同 数据值的顺序总是按照顺序排列
CREATE CLUSTERED INDEX mycolumn_cindex ON mytable(mycolumn) WITH
ALLOW_DUP_ROW(允许有重复记录的聚簇索引)
非聚簇索引 CREATE UNCLUSTERED INDEX mycolumn_cindex ON mytable(mycolumn)
六 索引的使用
当字段数据更新频率较低 查询使用频率较高并且存在大量重复值是建议使用聚簇索引
经常同时存取多列 且每列都含有重复值可考虑建立组合索引
复合索引的前导列一定好控制好 否则无法起到索引的效果 如果查询时前导列不在查询条件中则该复合索引不会被使用 前导列一定是使用最频繁的列
多表 *** 作在被实际执行前 查询优化器会根据连接条件 列出几组可能的连接方案并从中找出系统开销最小的最佳方案 连接条件要充份考虑带有索引的表 行数多的表内外表的选择可由公式 外层表中的匹配行数*内层表中每一次查找的次数确定 乘积最小为最佳方案
where子句中对列的任何 *** 作结果都是在sql运行时逐列计算得到的 因此它不得不进行表搜索 而没有使用该列上面的索引如果这些结果在查询编译时就能得到 那么就可以被sql优化器优化 使用索引 避免表搜索(例 select * from record where substring(card_no )=
&&select * from record where card_no like % )任何对列的 *** 作都将导致表扫描 它包括数据库函数 计算表达式等等 查询时要尽可能将 *** 作移至等号右边
where条件中的 in 在逻辑上相当于 or 所以语法分析器会将in ( ′ ′)转化为column= ′ or column= ′来执行 我们期望它会根据每个or子句分别查找 再将结果相加 这样可以利用column上的索引但实际上它却采用了 or策略 即先取出满足每个or子句的行 存入临时数据库的工作表中 再建立唯一索引以去掉重复行 最后从这个临时表中计算结果 因此 实际过程没有利用column上索引 并且完成时间还要受tempdb数据库性能的影响 in or子句常会使用工作表 使索引失效如果不产生大量重复值 可以考虑把子句拆开拆开的子句中应该包含索引
要善于使用存储过程 它使sql变得更加灵活和高效
lishixinzhi/Article/program/MySQL/201311/29603
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)