ATAC-seq信息分析流程主要分为以下几个部分:数据质控、序列比对、峰检测、motif分析、峰注释、富集分析,下面将对各部分内容进行展开讲解。 下机数据经过过滤去除接头含量过高或低质量的reads,得到clean reads用于后续分析。常见的trim
软件有Trimmomatic、Skewer、fastp等。fastp是一款比较新的软件,使用时可以用--adapter_sequence/--adapter_sequence_r2参数传入接头序列,也可以不填这两个参数,软件会自动识别接头并进行剪切。如: fastp \ --in1 A1_1.fq.gz \ # read1原始fq
文件 --out1 A1_clean_1.fq.gz \ # read1过滤后输出的fq文件 --in2 A1_2.fq.gz \ # read2原始fq文件 --out2 A1_clean_2.fq.gz \ # read2过滤后输出的fq文件 --cut_tail \ #从3’端向5’端滑窗,如果窗口内碱基的平均质量值小于设定阈值,则剪切 --cut_tail_window_size=1 \ #窗口大小 --cut_tail_mean_quality=30 \ #cut_tail参数对应的平均质量阈值 --average_qual=30 \ #如果一条read的碱基平均质量值小于该值即会被舍弃 --length_required=20 \ #经过剪切后的reads长度如果小于该值会被舍弃 fastp软件的详细使用方法可参考:https://github.com/OpenGene/fastp。fastp软件对于trim结果会生成网页版的报告,可参考官网示例http://opengene.org/fastp/fastp.html和http://opengene.org/fastp/fastp.json,也可以用FastQC软件对trim前后的数据质量进行评估,FastQC软件会对单端的数据给出结果,如果是PE测序需要分别运行两次来评估read1和read2的数据质量。 如: fastqc A1_1.fq.gz fastqc A1_2.fq.gz FastQC会对reads从碱基质量、接头含量、N含量、高重复序列等多个方面对reads质量进行评估,生成详细的网页版报告,可参考官网示例:http://www.bioinformatics.babraham.ac.uk/projects/fastqc/good_sequence_short_fastqc.html 经过trim得到的reads可以使用BWA、bowtie2等软件进行比对。首先需要确定参考基因组fa文件,对fa文件建立索引。不同的软件有各自建立索引的命令,BWA软件可以参考如下方式建立索引: bwa index genome.fa 建立好索引后即可开始比对,ATAC-seq推荐使用mem算法,输出文件经samtools排序输出bam: bwa mem genome.fa A1_clean_1.fq.gz A1_clean_2.fq.gz | samtools sort -O bam -T A1 >A1.bam 值得注意的是,在实验过程中质体并不能完全去除,因此会有部分reads比对到质体序列上,需要去除比对到质体上的序列,去除质体序列可以通过samtools提取,具体方法如下:首先将不含质体的染色体名称写到一个chrlist文件中,一条染色体的名称写成一行,然后执行如下命令即可得到去除质体的bam samtools view -b A1.bam $chrlist >A1.del_MT_PT.bam 用于后续分析的reads需要时唯一比对且去重复的,bwa比对结果可以通过MAPQ值来提取唯一比对reads,可以用picard、sambamba等软件去除dup,最终得到唯一比对且去重复的bam文件。 比对后得到的bam文件可以转化为bigWig(bw)格式,通过可视化软件进行展示。deeptools软件可以实现bw格式转化和可视化展示。首先需要在linux环境中安装deeptools软件,可以用以下命令实现bam向bw格式的转换: bamCoverage -b A1.bam -o A1.bw 此外,可以使用deeptools软件展示reads在特定
区域的分布,如: computeMatrix reference-point \ # reference-pioint表示计算一个参照点附近的reads分布,与之相对的是scale-regions,计算一个区域附近的reads分布 --referencePoint TSS \#以输入的bed文件的起始位置作为参照点 -S A1.bw \ #可以是一个或多个bw文件 -R gene.bed \ #基因组位置文件 -b 3000 \ #计算边界为参考点上游3000bp -a 3000 \ #计算边界为参考点下游3000bp,与-b合起来就是绘制参考点上下游3000bp以内的reads分布 -o A1.matrix.mat.gz \ #输出作图数据名称 #图形绘制 plotHeatmap \ -m new_A1.matrix.mat.gz \ #上一步生成的作图数据 -out A1.pdf \ # 输出图片名称 绘图结果展示: MACS2能够检测DNA片断的富集区域,是ATAC-seq数据call peak的主流软件。峰检出的原理如下:首先将所有的reads都向3'方向延伸插入片段长度,然后将基因组进行滑窗,计算该窗口的dynamic λ,λ的计算公式为:λlocal = λBG(λBG是指背景区域上的reads数目),然后利用泊松分布模型的公式计算该窗口的显著性P值,最后对每一个窗口的显著性P值进行FDR校正。默认校正后的P值(即qvalue)小于或者等于0.05的区域为peak区域。需要现在linux环境中安装macs2软件,然后执行以下命令: macs2 callpeak \ -t A1.uni.dedup.bam \ #bam文件 -n A1 \ # 输出文件前缀名 --shift -100 \ #extsize的一半乘以-1 --extsize 200 \ #一般是核小体大小 --call-summits #检测峰顶信息 注:以上参数参考文献(Jie Wang,et.al.2018.“ATAC-Seq analysis reveals a widespread decrease of chromatin accessibility in age-related macular degeneration.”Nature Communications) ATAC分析得到的peak是染色质上的开放区域,这些染色质开放区域常常预示着转录因子的结合,因此对peak区域进行motif分析很有意义。常见的motif分析软件有homer和MEME。以homer软件为例,首先在linux环境中安装homer,然后用以下命令进行motif分析: findMotifsGenome.pl \ A1_peaks.bed \ #用于进行motif分析的bed文件 genome.fa \ #参考基因组fa文件 A1 \ #输出文件前缀 -size given \ #使用给定的bed区域位置进行分析,如果填-size -100,50则是用给定bed中间位置的上游100bp到下游50bp的区域进行分析 homer分析motif的原理及结果参见:http://homer.ucsd.edu/homer/motif/index.html 根据motif与已知转录因子的富集情况可以绘制气泡图,从而可以看到样本与已知转录因子的富集显著性。 差异peak代表着比较组合染色质开放性有差异的位点,ChIP-seq和ATAC-seq都可以用DiffBind进行差异分析。DiffBind通过可以通过bam文件和peak的bed文件计算出peak区域标准化的readcount,可以选择edgeR、DESeq2等模型进行差异分析。 在科研分析中我们往往需要将peak区域与基因联系起来,也就是通过对peak进行注释找到peak相关基因。常见的peak注释软件有ChIPseeker、homer、PeakAnnotator等。以ChIPseeker为例,需要在R中安装ChIPseeker包和GenomicFeatures包,然后就可以进行分析了。 library(ChIPseeker) library(GenomicFeatures) txdb<- makeTxDbFromGFF(‘gene.gtf’)#生成txdb对象,如果研究物种没有已知的TxDb,可以用GenomicFeatures中的函数生成 peakfile <-readPeakFile(‘A1_peaks.narrowPeak’)#导入需要注释的peak文件 peakAnno <- annotatePeak(peakfile,tssRegion=c(-2000, 2000), TxDb=txdb) # 用peak文件和txdb进行peak注释,这里可以通过tssRegion定义TSS区域的区间 对于peak注释的结果,也可以进行可视化展示,如: p <- plotAnnoPie(peakAnno) 通过注释得到的peak相关基因可以使用goseq、topGO等R包进行GO富集分析,用kobas进行kegg富集分析,也可以使用DAVID在线工具来完成富集分析。可以通过挑选感兴趣的GO term或pathway进一步筛选候选基因。bw开发是负责SAP BW系统的业务需求分析、数据仓库的规划设计、系统实施部署
2.
负责BW数据仓库的ETL的设计、开发与部署
3.
负责BW数据源的设计、开发与优化管理
4.
负责BW数据模型、业务报表的设计、开发与优化管理
“BW”经常作为“Birth Weight”的缩写来使用,中文中表示:“出生体重”。“BW”(“出生体重)释义:英文缩写词:BW英文单词:Birth Weight缩写词中文简要解释:出生体重中文拼音:chū shēng tǐ zhòng缩写词流行度:369缩写词分类:Medical缩写词领域:Physiology关于BW的扩展资料:1. Preterm birth and low birth weight ( lbw ) are major determinants of infant morbidity and mortality.早产与低出生体重是婴儿期疾病率与死亡率的重要决定因素。2. Malaria can result in miscarriage and low birth weight, especially during the first and second pregnancies.
疟疾可以导致流产和低出生体重,尤其在第一胎和第二胎期间。3. In pregnant women, it causes low birth weight.在孕妇中,可造成低出生体重。4. Birth weight of the piglets is positively related with average daily gain of the piglets and the growing-finishing pigs.乳猪的出生重和以后仔猪和生长-肥育猪阶段的日增重正相关。5. Secondhand smoke has been linked to cancer, low birth weight and chronic lung-related illnesses, particularly in children.
二手烟和癌症、婴儿出生体重不足,以及慢性肺部疾病都有关联,尤其是对儿童。
评论列表(0条)