思路很简单:Spark 可以通过 JDBC 读取 MySQL 上的数据,也可以执行 SQL 查询,因此我们可以直接连接到 MySQL 并执行查询。那么为什么速度会快呢?对一些需要运行很长时间的查询(如报表或者BI),由于 Spark 是一个大规模并行系统,因此查询会非常的快。MySQL 只能为每一个查询分配一个 CPU 核来处理,而 Spark 可以使用所有集群节点的所有核。在下面的例子中,我们会在 Spark 中执行 MySQL 查询,这个查询速度比直接在 MySQL 上执行速度要快 5 到 10 倍。
另外,Spark 可以增加“集群”级别的并行机制,在使用 MySQL 复制或者 Percona XtraDB Cluster 的情况下,Spark 可以把查询变成一组更小的查询(有点像使用了分区表时可以在每个分区都执行一个查询),然后在多个 Percona XtraDB Cluster 节点的多个从服务器上并行的执行这些小查询。最后它会使用map/reduce 方式将每个节点返回的结果聚合在一起形成完整的结果。
spark将mysql表中按照字段的优先级关联,可以尝试下面的 *** 作。(sc)sqlContext:org.apache.spark.sql.SQLContext=org.apache.spark.sql.SQLContext@6cd1ee scala>val url="jdbc:mysql://slave02:3306/testdb?use..
在 *** 作数据库时会将两个或多个数据表关联起来通过一些条件筛选数据,在关联表时我们要遵循原则,这样会在效率上快很多。
支持mysql的,下面是示例spark streaming使用数据源方式插入mysql数据
import java.sql.{Connection, ResultSet}
import com.jolbox.bonecp.{BoneCP, BoneCPConfig}
import org.slf4j.LoggerFactory
object ConnectionPool {
val logger = LoggerFactory.getLogger(this.getClass)
private val connectionPool = {
try{
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)