mysql 中 创建索引很慢,怎么解决

mysql 中 创建索引很慢,怎么解决,第1张

1. 执行计划中明明有使用到索引,为什么执行还是这么慢?

2. 执行计划中显示扫描行数为 644,为什么 slow log 中显示 100 多万行?

a. 我们先看执行计划,选择的索引 “INDX_BIOM_ELOCK_TASK3(TASK_ID)”。结合 sql 来看,因为有 "ORDER BY TASK_ID DESC" 子句,排序通常很慢,如果使用了文件排序性能会更差,优化器选择这个索引避免了排序。

那为什么不选 possible_keys:INDX_BIOM_ELOCK_TASK 呢?原因也很简单,TASK_DATE 字段区分度太低了,走这个索引需要扫描的行数很大,而且还要进行额外的排序,优化器综合判断代价更大,所以就不选这个索引了。不过如果我们强制选择这个索引(用 force index 语法),会看到 SQL 执行速度更快少于 10s,那是因为优化器基于代价的原则并不等价于执行速度的快慢;

b. 再看执行计划中的 type:index,"index" 代表 “全索引扫描”,其实和全表扫描差不多,只是扫描的时候是按照索引次序进行而不是行,主要优点就是避免了排序,但是开销仍然非常大。

Extra:Using where 也意味着扫描完索引后还需要回表进行筛选。一般来说,得保证 type 至少达到 range 级别,最好能达到 ref。

在第 2 点中提到的“慢日志记录Rows_examined: 1161559,看起来是全表扫描”,这里更正为“全索引扫描”,扫描行数确实等于表的行数;

c. 关于执行计划中:“rows:644”,其实这个只是估算值,并不准确,我们分析慢 SQL 时判断准确的扫描行数应该以 slow log 中的 Rows_examined 为准。

4. 优化建议:添加组合索引 IDX_REL_DEVID_TASK_ID(REL_DEVID,TASK_ID)

优化过程:

TASK_DATE 字段存在索引,但是选择度很低,优化器不会走这个索引,建议后续可以删除这个索引:

select count(*),count(distinct TASK_DATE) from T_BIOMA_ELOCK_TASK+------------+---------------------------+| count(*) | count(distinct TASK_DATE) |+------------+---------------------------+| 1161559 | 223 |+------------+---------------------------+

在这个 sql 中 REL_DEVID 字段从命名上看选择度较高,通过下面 sql 来检验确实如此:

select count(*),count(distinct REL_DEVID) from T_BIOMA_ELOCK_TASK+----------+---------------------------+| count(*) | count(distinct REL_DEVID) |+----------+---------------------------+| 1161559 | 62235 |+----------+---------------------------+

由于有排序,所以得把 task_id 也加入到新建的索引中,REL_DEVID,task_id 组合选择度 100%:

select count(*),count(distinct REL_DEVID,task_id) from T_BIOMA_ELOCK_TASK+----------+-----------------------------------+| count(*) | count(distinct REL_DEVID,task_id) |+----------+-----------------------------------+| 1161559 | 1161559 |+----------+-----------------------------------+

在测试环境添加 REL_DEVID,TASK_ID 组合索引,测试 sql 性能:alter table T_BIOMA_ELOCK_TASK add index idx_REL_DEVID_TASK_ID(REL_DEVID,TASK_ID)

添加索引后执行计划:

这里还要注意一点“隐式转换”:REL_DEVID 字段数据类型为 varchar,需要在 sql 中加引号:AND T.REL_DEVID = 000000025xxx >>AND T.REL_DEVID = '000000025xxx'

执行时间从 10s+ 降到 毫秒级别:

1 row in set (0.00 sec)

结论

一个典型的 order by 查询的优化,添加更合适的索引可以避免性能问题:执行计划使用索引并不意味着就能执行快。

MySQL的最佳是单表百万级,一旦上到千万级就慢了,只能分表,分表不行就集群或者换数据库吧。

1.SQL你基础不怎么好 ,sql中尽量少使用 select *

2.索引字段类型注意下

这两个优化好 一般速度不会很慢 ,再慢的话 看下你数据库服务器吧

我们先来看第一个阶段,MySQL慢的诊断思路,一般我们会从三个方向来做:

第一个方向是MySQL内部的观测

第二个方向是外部资源的观测

第三个方向是外部需求的改造

1.1 MySQL 内部观测

我们来看MySQL内部的观测,常用的观测手段是这样的,从上往下看,第一部分是Processlist,看一下哪个SQL压力不太正常,第二步是explain,解释一下它的执行计划,第三步我们要做Profilling,如果这个SQL能再执行一次的话, 就做一个Profilling,然后高级的DBA会直接动用performance_schema ,MySQL 5.7 以后直接动用sys_schema,sys_schema是一个视图,里面有便捷的各类信息,帮助大家来诊断性能。再高级一点,我们会动用innodb_metrics进行一个对引擎的诊断。

除了这些手段以外,大家还提出了一些乱七八糟的手段,我就不列在这了,这些是常规的一个MySQL的内部的状态观测的思路。除了这些以外,MySQL还陆陆续续提供了一些暴露自己状态的方案,但是这些方案并没有在实践中形成套路,原因是学习成本比较高。

1.2 外部资源观测

外部资源观测这部分,我引用了一篇文章,这篇文章的二维码我贴在上面了。这篇文章是国外的一个神写的,标题是:60秒的快速巡检,我们来看一下它在60秒之内对服务器到底做了一个什么样的巡检。一共十条命令,这是前五条,我们一条一条来看。

1.uptime,uptime告诉我们这个机器活了多久,以及它的平均的负载是多少。

2.dmesg -T | tail,告诉我们系统日志里边有没有什么报错。

3.vmstat 1,告诉我们虚拟内存的状态,页的换进换出有没有问题,swap有没有使用。

4. mpstat -P ALL,告诉我们CPU压力在各个核上是不是均匀的。

5.pidstat 1,告诉我们各个进程的对资源的占用大概是什么样子。

我们来看一下后五条:

首先是iostat-xz 1,查看IO的问题,然后是free-m内存使用率,之后两个sar,按设备网卡设备的维度,看一下网络的消耗状态,以及总体看TCP的使用率和错误率是多少。最后一条命令top,看一下大概的进程和线程的问题。

这个就是对于外部资源的诊断,这十条命令揭示了应该去诊断哪些外部资源。

1.3 外部需求改造

第三个诊断思路是外部的需求改造,我在这里引用了一篇文档,这篇文档是MySQL的官方文档中的一章,这一章叫Examples of Common Queries,文档中介绍了常规的SQL怎么写, 给出了一些例子。文章的链接二维码在slide上。

我们来看一下它其中提到的一个例子。

它做的事情是从一个表里边去选取,这张表有三列,article、dealer、price,选取每个作者的最贵的商品列在结果集中,这是它的最原始的SQL,非常符合业务的写法,但是它是个关联子查询。

关联子查询成本是很贵的,所以上面的文档会教你快速地把它转成一个非关联子查询,大家可以看到中间的子查询和外边的查询之间是没有关联性的。

第三步,会教大家直接把子查询拿掉,然后转成这样一个SQL,这个就叫业务改造,前后三个SQL的成本都不一样,把关联子查询拆掉的成本,拆掉以后SQL会跑得非常好,但这个SQL已经不能良好表义了,只有在诊断到SQL成本比较高的情况下才建议大家使用这种方式。

为什么它能够把一个关联子查询拆掉呢?

这背后的原理是关系代数,所有的SQL都可以被表达成等价的关系代数式,关系代数式之间有等价关系,这个等价关系通过变换可以把关联子查询拆掉。

上面的这篇文档是一个大学的教材,它从头教了关于代数和SQL之间的关系。然后一步步推导怎么去简化这句SQL。

第一,MySQL本身提供了很多命令来观察MySQL自身的各类状态,大家从上往下检一般能检到SQL的问题或者服务器的问题。

第二,从服务器的角度,我们从巡检的脚本角度入手,服务器的资源就这几种,观测手法也就那么几种,我们把服务器的资源全部都观察一圈就可以了。

第三,如果实在搞不定,需求方一定要按照数据库容易接受的方式去写SQL,这个成本会下降的非常快,这个是常规的MySQL慢的诊断思路。


欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/zaji/8583672.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-04-18
下一篇 2023-04-18

发表评论

登录后才能评论

评论列表(0条)

保存