表1 语法分析关键字然后再通过语法规则解析,判断输入的SQL 语句是否满足MySQL语法,并且生成图5的语法树。由SQL语句生成的四个单词中,识别出两个关键字,分别是select 和from。根据MySQL的语法Select 和 from之间对应的是fields 字段,下面应该挂接username;在from后面跟随的是Tables字段,其下挂接的是userinfo。
优化器的作用是对SQL进行优化,生成最有的执行方案。如图6所示,前面提到的SQL解析器通过语法分析和语法规则生成了SQL语法树。这个语法树作为优化器的输入,而优化器(黄色的部分)包含了逻辑变换和代价优化两部分的内容。在优化完成以后会生成SQL执行计划作为整个优化过程的输出,交给执行器在存储引擎上执行。
所处的位置如上图所示,这节的重点在优化器中的逻辑变换和代价优化上。
逻辑变换也就是在关系代数基础上进行变换,其目的是为了化简,同时保证SQL变化前后的结果一致,也就是逻辑变化并不会带来结果集的变化。其主要包括以下几个方面:
这样讲概念或许有些抽象,通过图7 来看看逻辑变化如何在SQL中执行的吧。
如图7所示,从上往下共有4个步骤:
1. 针对存在的SQL语句,首先通过“否定消除”,去掉条件判断中的“NOT”。语句由原来的“or”转换成“and”,并且大于小于符号进行变号。蓝色部分为修改前的SQL,红色是修改以后的SQL。2. 等值传递,这一步很好理解分别降”t2.a=9” 和”t2.b=5”分别替换掉SQL中对应的值。3. 接下来就是常量表达式计算,将“5+7”计算得到“12”。4. 最后是常量表达式计算后的化简,将”9<=10”化简为”true”带入到最终的SQL表达式中完成优化。
代价优化是用来确定每个表,根据条件是否应用索引,应用哪个索引和确定多表连接的顺序等问题。为了完成代价优化,需要找到一个代价最小的方案。因此,优化器是通过基于代价的计算方法来决定如何执行查询的(Cost-based Optimization)。简化的过程如下:
这里将配置 *** 作的代价分为MySQL 服务层和MySQL 引擎层,MySQL 服务层主要是定义CPU的代价,而MySQL 引擎层主要定义IO代价。MySQL 5.7 引入了两个系统表mysql.server_cost和mysql.engine_cost来分别配置这两个层的代价。如下:MySQL 服务层代价保存在表server_cost中,其具体内容如下:
由上可以看出创建临时表的代价是很高的,尤其是内部的myisam或innodb临时表。MySQL 引擎层代价保存在表engine_cost中,其具体内容如下:
目前io_block_read_cost和memory_block_read_cost默认值均为1,实际生产中建议酌情调大memory_block_read_cost,特别是对普通硬盘的场景。MySQL会根据SQL查询生成的查询计划中对应的 *** 作从上面两张代价表中查找对应的代价值,并且进行累加形成最终执行SQL计划的代价。再将多种可能的执行计划进行比较,选取最小代价的计划执行。
当分析器生成查询计划,并且经过优化器以后,就到了执行器。执行器会选择执行计划开始执行,但在执行之前会校验请求用户是否拥有查询的权限,如果没有权限,就会返回错误信息,否则将会去调用MySQL引擎层的接口,执行对应的SQL语句并且返回结果。例如SQL:“SELECT * FROM userinfo WHERE username = 'Tom'“假设 “username“ 字段没有设置索引,就会调用存储引擎从第一条开始查,如果碰到了用户名字是” Tom“, 就将结果集返回,没有查找到就查看下一行,重复上一步的 *** 作,直到读完整个表或者找到对应的记录。需要注意SQL语句的执行顺序并不是按照书写顺序来的,顺序的定义会在分析器中做好,一般是按照如下顺序:
如果命中的记录比较多,应用会从MySql Server一批批获取数据
本文从MySQL中SQL语句的执行过程作为切入点,首先介绍了查询请求的执行流程,其中将MySQL的处理分为MySQL Server层和MySQL存储引擎层。通过介绍SQL语句的流转,引出了后面要介绍的5大组件,他们分别是:连接器、查询缓存、分析器、优化器、执行器。后面的内容中对每个组件进行了详细的介绍。连接器,负责身份认证和权限鉴别;查询缓存,将查询的结果集进行缓存,提高查询效率;分析器,对SQL语句执行语法分析和语法规则,生成语法树和执行计划;优化器,包括逻辑变换和代价优化;执行器,在检查用户权限以后对数据进行逐条查询,整个过程遵守SQL语句的执行顺序。
可以使用 pymysql 模块读取数据库数据
以下代码运行通过:
import pymysql pymysql.install_as_MySQLdb()import MySQLdb conn = MySQLdb.Connection(host='10.211.55.6', user='root', passwd='123456', port=3306, database='lucia_sqltest', charset='gbk')cursor = conn.cursor() # 获取一个游标sql = 'select * from users'cursor.execute(sql)data = cursor.fetchall()for d in data: # 注意 int 类型需要使用 str 函数转义 print("id: " + str(d[0]) + ' username: ' + d[1] + " password: " + d[2])
运行效果:
可以啊,没问题使用存储过程来做
或者你直接把你的sql写成语句块的形式就可以了啊
string sql=@“ sql1 sql2 sql 3.....”很多条SQL语句组成语句块,但是里面sql语句执行要控制逻辑哈,必须是上一条语句成功了才可以执行下一条语句哦!!
个你举个简单的例子:
string T_SQLS=
@"
if exits(select * from user where user_name=@usename)
begin
update user set userage=@usenage where user_name=@usename
select @@rowcount//这里你可以返回自定义 *** 作标识
end
else
begin
insert into user values(@usename,@usenage)
select @@rowcount
end
"
SqlConnand com=new SqlConnand (T_SQLS,connection)
com.parm........//添加参数
com ......执行,如果你使用了select 返回 *** 作结果,就不能使用ExcutNoneQuery()方法
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)