MySQL能去哪里学习?

MySQL能去哪里学习?,第1张

首先,学习基本的SQL语法。完成这个后,你就可以编写SQL语句了。这一步推荐:W3Schools的 SQL 教程。

其次,学习数据库的主要功能和使用方法,比如用户相关或者权限相关等等。

我推荐两本书:

一、《MySQL必知必会》 这本书讲的非常全,从基本概念,到查询到插入新建表,用户的管理,都有具体的例子,非常适合没有任何基础的同学来学习Mysql,总之这本书学习的方法就是:1、十分钟了解下数据库的基本概念 2、找到练手的数据库 3、对照着上面的内容去敲。本书里也有大量的内容是讲sql的,可以结合w3c的sql教程一起,有取舍地看。

二、《数据库系统概念》这本书是dba必看的。看完这些并且实践+思考之后,可以算入门了。接下来对于希望深入学习的童鞋我推荐几本书(很多大神都这么推荐),《高性能MySQL(第3版)》、 《MySQL技术内幕(第4版)》,《MySQL技术内幕 InnoDB存储引擎》,《深入理解MySQL》还有Mysql的官网。读完这些东西,再加些丰富的经验,理论上来讲就具备DBA的水平了。十分推荐阅读Planet MySQL上汇总的博客,特别是Percona's MySQL &InnoDB performance and scalability blog但是,正如我开头所言的。

面对问题的时候一定要积极思考!比如:我问你,面对一个并发量比较高的场景,如何配置mysql的连接数?你可能会回答:“哦,就是调高max_connection的数值吧。”那,你有没有思考过调到多少是最合适的呢?为什么这样设置就最合适呢?也许你会回答:“恩我知道,可以看系统之前的max_used_connection的数值,然后来设置。也可以调高back_log的值。”那你有没有思考过,max_connection连接数太高会有什么不好的影响呢?back_log设置的太高有什么不好的地方呢?max_connect的上限其实是取决于mysql能获得的文件描述符的数量,也就是说你就算设置成10000,最后也是没用的,系统会根据机器的情况自动调低。也许你会回答:“恩我知道,设置太高,会有系统开销...”那你有没有思考过,这些开销具体是什么呢?是什么工作导致了需要这些内存开销?也许你还会回答,在连接创建的时候,会立刻为它分配连接缓冲区以及查询缓冲区,这些都会吃内存。那你有没有思考过,占据的资源具体是多少呢?取决于哪些因素呢?好了,我们先结束这个问题。回到知乎的问题上来,其实我说了这么多,就是表达要如何自学mysql。所以的所以,你必须不断思考,才能在工作中面对具体场景的时候,非常淡定地推断:“哦,一定是这里出了问题。应该怎么怎么做。”面对问题,拿出打破砂锅问到底的精神,先思考一番,给出自己的假设,不要着急地去找度娘,谷歌。思考过后,带着你的推断或者答案,大胆地去搜索吧!去看看别人的见解,去看看官方的描述!这才是一个工程师应有的态度。最后我想给出一些有价值的学习资料。可以省去一些时间。-电子书:我认为多看书还是有好处的。有些书值得反复看许多遍,有时候只看一遍无法深刻理解吸收,思考也不够充分

培训课程如下:

一、大数据前沿知识及hadoop入门

零基础入门,了解大数据的历史背景及发展方向,掌握hadoop的两种安装配置

二、Hadoop部署进阶

熟练掌握hadoop集群搭建;对Hadoop架构的分布式文件系统HDFS进行深入分析

三、Java基础

了解java程序设计的基本思想,熟练利用eclipse进行简单的java程序设计,熟练使用jar文件,了解mysql等数据库管理系统的原理,了解基于web的程序开发流程

四、MapReduce理论及实战

熟悉MapReduce的工作原理及应用,熟悉基本的MapReduce程序设计,掌握根据大数据分析的目标设计和编写基于mapreduce的项目

五、hadoop+Mahout大数据分析

掌握基于hadoop+mahout的大数据分析方法的使用场景,熟练运用mahout的成熟算法进行特定场景的大数据分析

六、Hbase理论及实战

掌握hbase的数据存储及项目实战、掌握Spark、Hive的安装、配置及使用场景

七、Spark大数据分析

Spark、Hive的安装、配置及使用场景,熟练运用Spark的成熟算法进行特定场景的大数据分析

八、大数据学习综合知识储备

统计学:多元统计分析、应用回归

计算机:R、python、SQL、数据分析、机器学习

matlab和mathematica两个软件也是需要掌握的,前者在实际的工程应用和模拟分析上有很大优势,后者则在计算功能和数学模型分析上十分优秀,相互补助可以取长补短。


欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/zaji/8699826.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-04-20
下一篇 2023-04-20

发表评论

登录后才能评论

评论列表(0条)

保存