MySQL 索引合并(Index Merge)优化

MySQL 索引合并(Index Merge)优化,第1张

索引合并检索方法可以检索多个范围扫描并将结果合并。这种访问方法只能合并同一个表的索引扫描,不能合并跨表扫描。

合并可能生成基础扫描结果的"并集","交集",或者"交集的并集"

示例:

这种方法适用于 WHERE 子句中的条件是通过 AND 结合的不同索引的范围条件时,其中的每个条件都需要满足下列条件之一:

示例:

索引合并交集算法在所有使用的索引上同时进行扫描,并从扫描结果中生成行的交集

如果查询中的所有列都被使用的索引覆盖,不需要检索所有表行( EXPLAIN 输出中的 Extra 列中包括 Using index )。例如这个语句:

SELECT COUNT(*) FROM t1 WHERE key1 = 1 AND key2 = 1

如果使用的索引没有覆盖查询中所有的行,只有当所有使用的索引的范围条件满足时才检索整个行。

如果合并条件中包括 Innodb 表主键索引条件,主键并不用来检索数据,而是用来筛选使用其他条件检索出的行。 # 就是先通过其他的范围条件筛选出一部分数据,在从这部分数据中,通过主键来筛选出最终的结果

这种方法适用于 WHERE 子句中的条件是通过 OR 结合的不同索引的范围条件时,其中的每个条件都需要满足下列条件之一:

示例:

这种方法适用于 WHERE 子句中的条件是通过 OR 结合的不同索引的范围条件,但是不能使用 Index Merge Union 算法的情景

示例:

sort_union 和 union 算法的区别是, sort_union 必须在返回行数据前先获取行ID并对行ID进行排序。

在 optimizer_swith 中有4个关于 Index Merge 的变量:

index_merge,index_merge_intersection,index_merge_union,index_merge_sort_union

默认情况下都是启用的。要单独启用某个算法,设置 index_merge=off ,并将相应的标志设置为 on

之前在网上看到过很多关于mysql联合索引最左前缀匹配的文章,自以为就了解了其原理,最近面试时和面试官交流,发现遗漏了些东西,这里自己整理一下这方面的内容。

最左前缀匹配原则

在mysql建立联合索引时会遵循最左前缀匹配的原则,即最左优先,在检索数据时从联合索引的最左边开始匹配,示例:

对列col1、列col2和列col3建一个联合索引

KEY test_col1_col2_col3 on test(col1,col2,col3)

联合索引 test_col1_col2_col3 实际建立了 (col1)、(col1,col2)、(col,col2,col3) 三个索引。

SELECT * FROM test WHERE col1=“1” AND clo2=“2” AND clo4=“4”

上面这个查询语句执行时会依照最左前缀匹配原则,检索时会使用索引(col1,col2)进行数据匹配。

注意

索引的字段可以是任意顺序的,如:

SELECT * FROM test WHERE col1=“1” AND clo2=“2”

SELECT * FROM test WHERE col2=“2” AND clo1=“1”

这两个查询语句都会用到索引(col1,col2),mysql创建联合索引的规则是首先会对联合合索引的最左边的,也就是第一个字段col1的数据进行排序,在第一个字段的排序基础上,然后再对后面第二个字段col2进行排序。其实就相当于实现了类似 order by col1 col2这样一种排序规则。

有人会疑惑第二个查询语句不符合最左前缀匹配:首先可以肯定是两个查询语句都保函索引(col1,col2)中的col1、col2两个字段,只是顺序不一样,查询条件一样,最后所查询的结果肯定是一样的。既然结果是一样的,到底以何种顺序的查询方式最好呢?此时我们可以借助mysql查询优化器explain,explain会纠正sql语句该以什么样的顺序执行效率最高,最后才生成真正的执行计划。

减少开销 。建一个联合索引(col1,col2,col3),实际相当于建了(col1),(col1,col2),(col1,col2,col3)三个索引。每多一个索引,都会增加写 *** 作的开销和磁盘空间的开销。对于大量数据的表,使用联合索引会大大的减少开销!

覆盖索引 。对联合索引(col1,col2,col3),如果有如下的sql: select col1,col2,col3 from test where col1=1 and col2=2。那么MySQL可以直接通过遍历索引取得数据,而无需回表,这减少了很多的随机io *** 作。减少io *** 作,特别的随机io其实是dba主要的优化策略。所以,在真正的实际应用中,覆盖索引是主要的提升性能的优化手段之一。

效率高 。索引列越多,通过索引筛选出的数据越少。有1000W条数据的表,有如下sql:select from table where col1=1 and col2=2 and col3=3,假设假设每个条件可以筛选出10%的数据,如果只有单值索引,那么通过该索引能筛选出1000W10%=100w条数据,然后再回表从100w条数据中找到符合col2=2 and col3= 3的数据,然后再排序,再分页;如果是联合索引,通过索引筛选出1000w10% 10% *10%=1w,效率提升可想而知!

引申

对于联合索引(col1,col2,col3),查询语句 SELECT * FROM test WHERE col2=2是否能够触发索引?

大多数人都会说NO,实际上却是YES。

原因:

EXPLAIN SELECT * FROM test WHERE col2=2

EXPLAIN SELECT * FROM test WHERE col1=1

观察上述两个explain结果中的type字段。查询中分别是:

index: 这种类型表示mysql会对整个该索引进行扫描。要想用到这种类型的索引,对这个索引并无特别要求,只要是索引,或者某个联合索引的一部分,mysql都可能会采用index类型的方式扫描。但是呢,缺点是效率不高,mysql会从索引中的第一个数据一个个的查找到最后一个数据,直到找到符合判断条件的某个索引。所以,上述语句会触发索引。

ref: 这种类型表示mysql会根据特定的算法快速查找到某个符合条件的索引,而不是会对索引中每一个数据都进行一一的扫描判断,也就是所谓你平常理解的使用索引查询会更快的取出数据。而要想实现这种查找,索引却是有要求的,要实现这种能快速查找的算法,索引就要满足特定的数据结构。简单说,也就是索引字段的数据必须是有序的,才能实现这种类型的查找,才能利用到索引。

以上所述是我给大家介绍的Mysql联合索引最左匹配原则,希望对大家有所帮助,如果大家有任何疑问请给我留言,我会及时回复大家的。

《 两个月拿到N个offer,看看我是如何做到的 》

《 面试总结:2019年最全面试题资料学习大全—(含答案) 》

《 淘宝面试回来,想对程序员们谈谈 》

《 看过太多大厂面试题,其实考的无非是这 3 点能力 》


欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/zaji/8728567.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-04-20
下一篇 2023-04-20

发表评论

登录后才能评论

评论列表(0条)

保存