怎么在mysql中放入json数据

怎么在mysql中放入json数据,第1张

我们知道,JSON是一种轻量级的数据交互的格式,大部分NO SQL数据库的存储都用JSON。MySQL从5.7开始支持JSON格式的数据存储,并且新增了很多JSON相关函数。MySQL 8.0 又带来了一个新的把JSON转换为TABLE的函数JSON_TABLE,实现了JSON到表的转换。

举例一

我们看下简单的例子:

简单定义一个两级JSON 对象

mysql>set @ytt='{"name":[{"a":"ytt","b":"action"},  {"a":"dble","b":"shard"},{"a":"mysql","b":"oracle"}]}'Query OK, 0 rows affected (0.00 sec)

第一级:

mysql>select json_keys(@ytt)+-----------------+| json_keys(@ytt) |+-----------------+| ["name"]        |+-----------------+1 row in set (0.00 sec)

第二级:

mysql>select json_keys(@ytt,'$.name[0]')+-----------------------------+| json_keys(@ytt,'$.name[0]') |+-----------------------------+| ["a", "b"]                  |+-----------------------------+1 row in set (0.00 sec)

我们使用MySQL 8.0 的JSON_TABLE 来转换 @ytt。

mysql>select * from json_table(@ytt,'$.name[*]' columns (f1 varchar(10) path '$.a', f2 varchar(10) path '$.b')) as tt

+-------+--------+

| f1    | f2     |

+-------+--------+

| ytt   | action |

| dble  | shard  |

| mysql | oracle |

+-------+--------+

3 rows in set (0.00 sec)

举例二

再来一个复杂点的例子,用的是EXPLAIN 的JSON结果集。

JSON 串 @json_str1。

set @json_str1 = ' {  "query_block": {    "select_id": 1,    "cost_info": {      "query_cost": "1.00"    },    "table": {      "table_name": "bigtable",      "access_type": "const",      "possible_keys": [        "id"      ],      "key": "id",      "used_key_parts": [        "id"      ],      "key_length": "8",      "ref": [        "const"      ],      "rows_examined_per_scan": 1,      "rows_produced_per_join": 1,      "filtered": "100.00",      "cost_info": {        "read_cost": "0.00",        "eval_cost": "0.20",        "prefix_cost": "0.00",        "data_read_per_join": "176"      },      "used_columns": [        "id",        "log_time",        "str1",        "str2"      ]    }  }}'

第一级:

mysql>select json_keys(@json_str1) as 'first_object'+-----------------+| first_object    |+-----------------+| ["query_block"] |+-----------------+1 row in set (0.00 sec)

第二级:

mysql>select json_keys(@json_str1,'$.query_block') as 'second_object'+-------------------------------------+| second_object                       |+-------------------------------------+| ["table", "cost_info", "select_id"] |+-------------------------------------+1 row in set (0.00 sec)

第三级:

mysql> select json_keys(@json_str1,'$.query_block.table') as 'third_object'\G*************************** 1. row ***************************third_object: ["key","ref","filtered","cost_info","key_length","table_name","access_type","used_columns","possible_keys","used_key_parts","rows_examined_per_scan","rows_produced_per_join"]1 row in set (0.01 sec)

第四级:

mysql>select json_extract(@json_str1,'$.query_block.table.cost_info') as 'forth_object'\G*************************** 1. row ***************************forth_object: {"eval_cost":"0.20","read_cost":"0.00","prefix_cost":"0.00","data_read_per_join":"176"}1 row in set (0.00 sec)

那我们把这个JSON 串转换为表。

SELECT * FROM JSON_TABLE(@json_str1,

"$.query_block"

COLUMNS(

rowid FOR ORDINALITY,

NESTED PATH '$.table'

COLUMNS (

a1_1 varchar(100) PATH '$.key',

a1_2 varchar(100) PATH '$.ref[0]',

a1_3 varchar(100) PATH '$.filtered',

nested path '$.cost_info'

columns (

a2_1 varchar(100) PATH '$.eval_cost' ,

a2_2 varchar(100) PATH '$.read_cost',

a2_3 varchar(100) PATH '$.prefix_cost',

a2_4 varchar(100) PATH '$.data_read_per_join'

),

a3 varchar(100) PATH '$.key_length',

a4 varchar(100) PATH '$.table_name',

a5 varchar(100) PATH '$.access_type',

a6 varchar(100) PATH '$.used_key_parts[0]',

a7 varchar(100) PATH '$.rows_examined_per_scan',

a8 varchar(100) PATH '$.rows_produced_per_join',

a9 varchar(100) PATH '$.key'

),

NESTED PATH '$.cost_info'

columns (

b1_1 varchar(100) path '$.query_cost'

),

c INT path "$.select_id"

)

) AS tt

+-------+------+-------+--------+------+------+------+------+------+----------+-------+------+------+------+------+------+------+

| rowid | a1_1 | a1_2  | a1_3   | a2_1 | a2_2 | a2_3 | a2_4 | a3   | a4       | a5    | a6   | a7   | a8   | a9   | b1_1 | c    |

+-------+------+-------+--------+------+------+------+------+------+----------+-------+------+------+------+------+------+------+

|     1 | id   | const | 100.00 | 0.20 | 0.00 | 0.00 | 176  | 8    | bigtable | const | id   | 1    | 1    | id   | NULL |    1 |

|     1 | NULL | NULL  | NULL   | NULL | NULL | NULL | NULL | NULL | NULL     | NULL  | NULL | NULL | NULL | NULL | 1.00 |    1 |

+-------+------+-------+--------+------+------+------+------+------+----------+-------+------+------+------+------+------+------+

2 rows in set (0.00 sec)

当然,JSON_table 函数还有其他的用法,我这里不一一列举了,详细的参考手册。

请点击输入图片描述

创建单个json数组

创建单个对象,并返回该对象

将其他类型的值转换成JSON类型来获取json值

将 json 值作为参数传入,如果值有效,则返回其 json 类型,否则报错

将两个或多个 json 值合并为一个 json 并返回最终值

合并两个或多个 json 值,但不合并重复键的值,如果出现重复键,仅保留最后一个的值

经过函数转换得到的 json 是区分大小写的,原因在于转换后的字符集格式为 utf8mb4 和 utf8mb4_bin ,因为 utf8mb4_bin 是二进制排序规则,所以区分大小写

因为区分大小写,所以 json 中的 null 、 true 和 false 都必须用小写字母编写

直接插入键值对语句和用 JSON_OBJECT 转换成json值存入的差别在于,前者需要双反斜杠转义字符,而后者只需要单反斜杠转义字符

当需要存储的内容如下

使用直接插入的方法时:

使用 JSON_OBJECT 时

案例

因为 $[1] 和 $[2] 计算为非标量值, 所以它们可以用作选择嵌套值的更具体的路径表达式的基础。例子:

结合 JSON_SET``JSON_INSERT``JSON_REPLACE``JSON_REMOVE 的使用

JSON_SET 替换存在的路径的值, 并为不存在的路径添加值

JSON_INSERT 添加新值, 但不替换现有值:

JSON_REPLACE 替换现有值并忽略新值:

JSON_REMOVE 使用一个或多个路径, 这些路径指定要从文档中删除的值。返回值是原始文档减去由文档中存在的路径选择的值:


欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/zaji/8730322.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-04-20
下一篇 2023-04-20

发表评论

登录后才能评论

评论列表(0条)

保存