python小程序--实现DNA到RNA的转换

python小程序--实现DNA到RNA的转换,第1张

在处理基因组信息的时候,我们时不时需要对DNA序列进行处理,比如将DNA转换成RNA,对于较少批量的数据来说,可以人工处理,但是在面对大的fastq文件的时候,会显得苍白无力,下面分别介绍两种处理方式

1单个序列

2文件处理

以上小程序可以进行转换。

PCR(Polymerase Chain Reaction)和DNA复制是两种不同的生物技术。

DNA复制是细胞内DNA的自我复制过程,是细胞生长和繁殖的基础。DNA复制在生物细胞的生理代谢过程中,是一种自动的过程,具有高度的正确性。

PCR是一种实验室技术,是模拟DNA复制的过程,是一种人工扩增DNA片段的方法。PCR技术可以从很少量的DNA模板中扩增出大量的DNA片段。它在遗传学,病理学,微生物学,生物技术等领域具有广泛的应用。

总的来说,DNA复制是细胞生理代谢过程中的一部分,而PCR是一种实验室技术,它利用酶和化学试剂模拟DNA复制的过程,扩增DNA片段

主要是用那台科学的复制机,要在发明制造机上升级复制模拟市民才能克隆。

1、无提示完美克隆,小人人物形态完美克隆,特征全度没变当然特征特别多的可能会损失点特征。机器克隆时候特效颜色是绿色。

2、《模拟人生4》是由Maxis Software开发的一款模拟经营类游戏,是《模拟人生》系列的第四代作品,游戏中玩家可以打造个性化的世界,同时游戏将提供便捷的分享功能,把模拟市民快速分享给朋友,同时支持离线单机功能。

人类DNA是指的一个基因序列,一种基因组的排布,如果非要说是相当于机器人的程序,个人感觉还是比较牵强,因为这种序列排布可能仅仅是一种程序的一小部分,人类,包括动物等等的基因是不一样的,所以可以人为程序不一样,但是,DNA可能只是这个程序的一个载体,或者说一个基础代码,基础代码可能不具备智能化,不具备决策,思考等能力。所以,基础代码上面还有上层应用代码,真正的交互,思考,等复杂的功能还是在应用代码等这种高级代码,甚至含有各种算法的代码,所以说,人类和机器人在未来肯定越来越差距越来越小,但人类DNA的研究永远是一个永恒的主题,至少目前还没有绝对的突破性的进展!

人类DNA是指的一个基因序列,一种基因组的排布,如果非要说是相当于机器人的程序,个人感觉还是比较牵强,因为这种序列排布可能仅仅是一种程序的一小部分,人类,包括动物等等的基因是不一样的,所以可以人为程序不一样,但是,DNA可能只是这个程序的一个载体,或者说一个基础代码,基础代码可能不具备智能化,不具备决策,思考等能力。所以,基础代码上面还有上层应用代码,真正的交互,思考,等复杂的功能还是在应用代码等这种高级代码,甚至含有各种算法的代码,所以说,人类和机器人在未来肯定越来越差距越来越小,但人类DNA的研究永远是一个永恒的主题,至少目前还没有绝对的突破性的进展!

与由芯片和电路组成的传统计算机不同计算机的原材料是人工制作的片断传统计算机是将数据转化成和后再进行处理而计算机则是将数据转化成碱基序列传统计算机依靠电信号来控制而计算机则通过控制分子间的生化反应来完成运算。 由以色列魏茨曼研究所研制的这种计算机只有几个纳米大它能察觉到细胞中信使核糖核酸的异常。信使的作用是充当生成蛋白质的中间媒介传递遗传信息。在试管实验中该计算机对与肺癌和前列腺癌相关的异常信使非常敏感。在发现异常的信使后它便释放出由控制生成的抗癌药这种药物能抑制与肿瘤相关的基因表达。计算机的研制尚处起步阶段要将其应用到临床可能还需要等待数十年。但是美国威斯康星大学的计算机专家劳埃德·史密斯说“这种新型计算机是第一种使用做原料并释放药物的计算机首次实现了输入和输出的生物化。这就意味着它能够与活的生物系统相融合。” 目前这种计算机只能在特殊的盐溶液中发挥作用。研究人员指出要用它来真正诊治癌症还必须解决许多难题其中最重要的就是使其在生物环境中持续工作。研究人员预测未来的计算机要比目前这种样机复杂得多。它应该能够识别与癌症相关的多种分子而不仅是信使。另外它还能释放多种药物而不只限于药品。在这种计算机真正用于临床之前还必须进行组织培养液、低等生物、哺乳动物和人体试验 上海交通大学生命科学研究中心和中科院上海生命科学院营养科学研究所最近于试管中完成了DNA计算机的雏形研制在实验上把自动机与表面DNA计算结合到了一起。这在中国乃属首次相关论文已发表在中国《科学通报》49卷第1期的英文版上。 据介绍这一DNA计算机采用双色荧光标记对输入与输出分子进行同时检测用测序仪对自动运行过程进行实时监测用磁珠表面反应法固化反应提高可控性 *** 作技术等以至最终在一定程度上完成模拟电子计算机处理01信号的功能将来通过计算芯片技术把电子计算机的计算功能进行本质上的提升在理论上和潜在的应用上都有重大意义。 近年来利用遗传物质DNA分子中蕴含的计算能力开发具有强大功能的DNA计算机成为计算机科学家和生物学家的梦想。1994年埃德曼用DNA分子解决了电子计算机原则上不能解决的“邮递员问题”揭开了DNA计算机研究的新纪元。2001年由以色列魏茨曼研究所首先完成的基于DNA分子的自动机模型被评选为当年的国际十大新闻。 上海交通大学生命科学研究中心主任贺林教授认为目前的DNA计算机尚处在襁褓阶段还不具商业运用价值但是其强大的并行运算能力和以生物分子为计算物质的特征是传统电子计算机所不具备的。 贺林教授说在不久的将来DNA计算机可被用来开发新一代的基因分型技术处理基因组的信息或用注入到人体内的DNA计算机进行基因治疗。如果DNA代表生命科学计算机代表信息科学DNA计算机这个典型的交叉课题或许是后基因组时代生命学科与信息学科大融合、大碰撞的一个缩影。编辑王秀 埃胡德教授以及以色列魏兹曼学院的研究人员在数年前就建造了最小的生物分子计算机现在在实验室的实验中他们已经能够使它分析生物信息发现和治疗前列腺癌和肺癌。埃胡德说我们已经给它增加了输入/输出系统它能够诊断出疾病并在试管中制造出相应的药物。 这种计算机的尺寸非常地小一滴水中就可能包含有1成亿个计算机。它的输入/输出模块以及软件都是由DNA分子构成的。 这一技术能够给癌症等疾病在未来的诊治带来革命性的变化无需再进行切片检查DNA计算机能够在人体内的组织中诊断疾病。埃胡德说我们的医疗计算机可能被看作一种药物由血液带到全身的各处检查每个细胞是否已经发生了病变。 它能够使医生在肿瘤形成前治疗癌症如果疾病已经扩散到身体的其它部分它会向“顽固的”细胞释放药物。不同的输入模块能够诊治不同的疾病。 现在生物计算机还只能在盐溶液中工作要把它应用到实际的疾病诊断中还有很多障碍需要突破。既要确保计算机能够在人体内的生物环境下继续正常工作又不能对人体自身的免疫系统造成混乱即要做到绝对安全这显然是非常必要的夏皮罗说。 它们也应该比现在的原型要复杂不仅仅是辨认跟癌症有关的RNA还要分配各种药物也不仅仅是DNA疗法。它们需要接受在细胞环境、组织、单个器官和动物体内的实验最终才能用在人身上。 试管中参与生化反应的分子很多相当于大批的DNA计算机在同时工作尽管生化反应有时需要很长的时间但极其大量一个摩尔的DNA溶液含有10的23次方个分子每个分子都是一台计算机的DNA计算机同时运算运算速度能达到每秒10亿次的高速。而且DNA计算机的能耗非常低耗能只有电子计算机的一百亿分之一而它的存储密度却大约是人们通常使用的磁盘存储器的10000亿倍这些都是DNA计算机的优点。” 夏院士对记者说“但DNA计算机也存在两大缺陷由于生化反应本身存在一定的随机性所以这种运算的结果也就不完全精确。另外参与运算的DNA分子之间不能像传统计算机一样进行通讯只能‘各自为战’这对于DNA计算机今后处理一些大型计算也是一种缺陷。” “最主要的是DNA计算机面对的这些障碍现在看来都是‘难以逾越的’所以除了针对一些特定问题DNA计算机在实际应用上还不如纳米计算机更有希望。”夏院士最后强调说。 新浪科技讯 据美国《新科学家》网站美国东部时间8月18日北京时间8月19日消息 世界第一台可运行游戏程序的DNA计算机现已面世。该系统命名为“MAYA”是目前第一个互动式DNA计算处理系统。该系统是以生化酶为计算基础来运算简单游戏。 DNA计算机是美国南加州大学莱昂纳德-阿德尔博士于1994年提出的奇妙构思DNA计算机通过控制DNA分子间的生化反应来完成运算。DNA分子之间的反应可取代CPU进行计算处理 。目前的DNA计算技术都必须将DNA溶于试管液体中。 该DNA计算系统是由美国哥伦比亚大学米兰-斯托贾诺维克Milan Stojanovic和新墨西哥大学达克-斯蒂芬维克Darko Stefanovic研制开发的。以色列魏茨曼科学研究所科比-贝尼桑Kobi Benenson称“用复杂的DNA分子反应作为逻辑通道进行数据处理并实现具体的游戏程序是DNA计算处理技术上的一个里程碑。” 通过生化酶不同的反应可实现比井字游戏更为复杂的计算处理。但是斯托贾诺维克和斯蒂芬维克表示“尽管DNA计算机可顺利运行而无需人为性干预。但是DNA计算机远不及硅芯片计算机因为在人机交互处理中人为 *** 作与DNA计算机的交互不能像硅芯片计算机那样很好地结合在一起。”目前很少有人能战胜MAYA斯托贾诺维克已经输给MAYA100多次。他指出“我们应该改动游戏程序让电脑输几次使玩家感受到胜利的喜悦。” 伦敦大学计算机科学家彼得-本特利Peter Bentley说“这是一项非常有趣的研究成果。但是该系统只是一个新奇的事物目前仅限于井字游戏尚不能拓展至更广阔的 新华网华盛顿3月18日电记者毛磊美国科学家利用简单的DNA计算机在实验中为一个有24个变量、100万种可能结果的数学难题找到了答案。这是迄今利用非电子化计算手段解出的最复杂数学问题表明DNA计算机研制又迈出了重要一步。 美国南加利福尼亚大学教授阿德勒曼将这一研究成果发表在新一期美国《科学》杂志上。 DNA脱氧核糖核酸是生物遗传的物质基础它通过4种核苷酸的排列组合存储生物遗传信息。将运算信息排列于DNA上并通过特定DNA片段之间的相互作用来得出运算结果是DNA计算机工作的主要原理。 阿德勒曼教授是DNA计算机研究领域的先驱。他于1994年在实验中演示DNA计算机可以解决著名的“推销员问题”首次论证了这种计算技术的可行性。“推销员问题”用数学语言来说是要求在7个城市间寻找最短的路线这一问题相对简单心算就可以给出答案。 但这次阿德勒曼教授用DNA计算机演示新问题难度就大多了靠人脑的计算能力基本无法处理。这一逻辑问题名叫“NP完全3-SAT问题”听起来不知所云但可以形象化地表述如下 假设你走进一个有100万辆汽车的车行想买一辆称心的车。你向销售员提出了一大堆条件如“想买一辆4座和自动档的”“敞蓬和天蓝色的”宝马车等等加起来多达24项。在整个车行中能满足你所有条件的车只有一辆。从理论上说销售员必须一辆辆费劲地找。传统的电子计算机采用的就是这种串行计算的办法来求解。 阿德勒曼等设计的DNA计算机则对这一问题进行了并行处理。他们首先利用DNA片段编码了100万种可能的答案然后将其逐一通过不同容器每个容器都放入了代表24个限制条件之一的DNA。每通过一个容器满足特定限制条件的DNA分子经反应后被留下并进入下一个容器继续接受其它限制条件的检验不满足的则被排除出去从解决这个问题的过程中可以看出理论上DNA计算机的运算策略和速度将优于传统的电子计算机。阿德勒曼教授说虽然他们的新实验进一步提高了DNA计算机模型的运算能力但总的来说DNA计算机错误率还是太高要真正超越电子计算机还需要在DNA大分子 *** 纵技术等方面有大的突破。 人们正在探索将光电子学和生物工程这两个最尖端的技术引入计算机领域研制超小型、超高速、超大容量的新型计算机并对此充满信心。人们对光子计算机的设想是1根据光学空间的多维特性为计算机设计新的逻辑结构和运算原理。2充分利用光子元件体积小传送信息速度快的特点用超高速大容量的光子元件替代目前计算机中使用的硅化学元件用光导纤维或光波代替普通金属导线。 仿生计算机的设计思路与光子计算机有异曲同工之妙1通过对生物的脑和神经系统中信息传递、信息处理等原理的进一步研究设计全新的仿生模式计算机并与人工智能的研究相互借鉴、共同发展。2模拟生物细胞中的蛋白质和酶等物质的产生过程制造出仿生集成芯片来替代目前计算机中使用的半导体元件。 50年前年轻的美国科学家詹姆斯·沃森和英国科学家弗朗西斯·克里克正式提出了DNA脱氧核糖核酸的双螺旋结构模型。DNA结构这一分子生物学中最基本的谜团揭开后释放出了惊人的能量。这50年来因为DNA的研究而涌现出来的基因克隆、基因组测序、聚合酶链式反应等技术直接促进了现代生物技术产业的兴起。可以说DNA双螺旋结构的发现为现代基因工程奠定了基础。 事实上DNA的影响力远不止于生物领域它直接启发了区别于传统电子计算机计算模式的DNA计算机的出现。1994年DNA计算机诞生于南加利福尼亚大学莱昂那多·阿德莱曼Leonard Adleman教授的试管中据说这一设想是受到沃森所著的《基因分子生物学》教科书的启发。虽然在9年之后的今天DNA计算机还只是科学之树的“嫩枝”科学界对其态度也见仁见智。但在“寻找硅的替代物”已成为一场如火如荼的运动的今天DNA计算依然是值得探索的方向。 DNA启发计算。与传统的硅电子计算机“看得见、摸得着”并有着越来越精致的外型不同的是目前的DNA计算机还都只是躺在试管里的液体。之所以会构造出如此古怪的计算机其原因在于科学家普遍认为目前计算机的缩微化已接近极限。摩尔定律告诉我们芯片制造商大约每18个月就会把挤在指甲盖那么大的硅片里的晶体管数量增加一倍而事实的确如此。物理学定律则认为这种成倍增长的速度不会永远持续下去。最终晶体管会变得非常小小到只有几个分子那么大。在这样小的距离里起作用的将是古怪的量子定律电子会从一个地方跳到另外一个地方而不穿过这两个地方之间的空间就像破漏的消防水管中的水这时的电子会越过导线和绝缘层从而产生致命的短路。因此人们需要掌握能制造出体积更微小的计算机的技术目前谈得较多的DNA计算机、量子计算机、光子计算机、分子计算机就是这一领域主要的探索方向。 就现在的情况下还难以预测下一代计算机将会是什么样的或许未来的计算机芯片是一滴溶液。可千万别小看这一滴溶液阿德莱曼当年就是用一滴溶液解决了著名的“推销员问题”即哈米尔顿Hamilton的路径问题要求在7个城市间寻找最短路线虽然这一问题相对简单人类的心算就可以解决但这是对DNA计算技术可行性的首次论证。去年阿德莱曼又利用简单的DNA计算机为一个有着24个变量、100万种可能结果的数学难题这一逻辑问题名为“NP完全3-SAT问题”找到了答案而这样的计算就连传统计算机都不易做到。其实DNA计算机的最大优点在于其惊人的存贮容量和运算速度。一立方厘米的DNA上存储的信息比一万亿张光盘存储的还多十几小时的DNA计算就能相当于所有电脑自问世以来的总运算量。 更重要的是DNA计算机的能耗非常低只有电子计算机的一百亿分之一。虽然目前单个DNA计算机的运算速度比传统计算机慢得多但由于它能够同时执行大量的运算如一根试管可容纳一万亿个DNA计算机这些计算机可以同时并发运算如此看来“稚嫩”的DNA计算机至少非常适合于解决那些需要穷尽各种计算结果的“组合问题”。 何时突破“试管”一些科学家预计十到二十年后DNA计算机将进入实用阶段。当然也有不少科学家对此提出了质疑。毕竟九年的时间对于看清楚可能会对未来产生重大影响的技术的前途来说实在太短。不说别的可自动运行的DNA计算机也才诞生了不足两年早先的DNA计算机需要研究人员的一点“手工”推动如改变温度或添加化学物。 这台世界上首次在输入、输出系统及软硬件均由生物分子制成的自动编程运算式DNA计算机诞生在以色列的魏茨曼学院该学院的埃胡德·沙皮罗教授在发表这项成果的同时表示“目前这种计算机的功能尚显单一在现实生活中不能马上应用而且太小了人们每次无法仅使用其中的一台。”另外参与运算的DNA分子之间并不能像传统计算机一样进行通讯只能“各自为战”。DNA计算机的弊端还不仅如此。当年阿德莱曼的“试管计算机”在几秒内得出了所有可能的哈米尔顿路径后却不得不再花费数周去拣出那些正确的答案。阿德莱曼在演示了其DNA计算机是如何解决“NP完全3-SAT问题”后也表示虽然他们的新实验进一步提高了DNA计算机模型的运算能力但总的来说DNA计算机错误率还是太高要真正超越电子计算机还需要在DNA大分子 *** 纵技术等方面有大的突破。尽管如此种种的不足并没有阻碍DNA计算机的进一步发展尤其是其商业化的脚步。 2002年年初奥林巴斯公司与东京大学联合开发出了全球第一台能够真正投入商业应用的DNA计算机用于基因的诊断。该计算机由分子计算组件和电子计算部件两部分组成前者用来计算分子的DNA组合以实现化学反应搜索并筛选出正确的DNA结果而后者则对这些结果进行分析并且能将原来人工分析DNA需要的3天时间缩短为6个小时。除了在医疗领域外如新材料开发领域也在探讨DNA计算机的应用力图通过有效的配置分子达到生产出新材料的目的。这些足以说明DNA计算机正试图走出只能解决数学问题的有限用途真正开始深入产业。 更令人期待的是一旦微小的计算机成为现实这些“理想”如巨型计算机装在口袋里嵌入衣服里的计算机会告诉洗衣机应当用什么水温洗涤衣服笔芯中的墨水即将用完时嵌在笔中的计算机能提醒更换笔芯等等都能成真。 四进制与生物计算机。如果计算机采用了四进制会有什么好处其中最大的好处是能立即节省一半的运算单元并能提高系统的整体运算速度。如果某台电脑需要二十万个运算单元在采用了四进制后只需十万个运算单元就能发挥相同的效果。相对于电子计算机生物电脑的运算元件绝对不可能是集成电路或电子管这些与生物特性完全不相干的东西就像DNA计算机其本身依靠DNA中的A、T、G、C四个独立碱基构成先天性的形成了一个四进制组合这与目前半导体开合动作所形成的二进制一样。 事实上目前最可能成为生物计算机运算单元的也就是DNA或RNA核糖核酸。当然生物电脑仍存在很难突破的瓶颈。仅以运算元件来说DNA或RNA分子的控制毕竟不如集成电路容易况且是控制数以十万、百万计的DNA或RNA分子更别提如何辨别这些分子。不过正如当年的核融合技术在真正实现以前也曾遭遇过种种困难最终在海森堡、奥本海默、费曼等物理学家的努力下还是取得了成功一样相信随着人类科技的飞速发展待生物科技成熟后具有人工智能的、能为人类造福的全新计算机技术会在不远的将来诞生。

实验方法原理

①模板DNA的变性:模板DNA经加热至94℃左右一定时间后,使模板DNA双链或经PCR扩增形成的双链DNA解离,使之成为单链,以便它与引物结合,为下轮反应做准备;

②模板DNA与引物的退火(复性):模板DNA经加热变性成单链后,温度降至55℃左右,引物与模板DNA单链的互补序列配对结合;

③引物的延伸:DNA模板--引物结合物在Taq酶的作用下,以dNTP为反应原料,靶序列为模板,按碱基配对与半保留复制原理,合成一条新的与模板DNA 链互补的半保留复制链。

重复循环变性--退火--延伸三过程,就可获得更多的“半保留复制链”,而且这种新链又可成为下次循环的模板。每完成一个循环需2~4分钟, 2~3小时就能将待扩目的基因扩增放大几百万倍。

典型的PCR包括高温变性、低温退火、中温延伸三个步骤,通过将这一套过程不断循环,使DNA得以成百万倍的扩增。

扩展资料

PCR技术,即聚合酶链反应(polymerase chain reaction,PCR)是由美国PE Cetus公司的Kary Mullis在1983年(1993年获诺贝尔化学奖)建立的。

这项技术可在试管内的经数小时反应就将特定的DNA片段扩增数百万倍,这种迅速获取大量单一核酸片段的技术在分子生物学研究中具有举足轻重的意义,极大地推动了生命科学的研究进展。

它不仅是DNA分析最常用的技术,而且在DNA重组与表达、基因结构分析和功能检测中具有重要的应用价值。

PCR可以被认为是与发生在细胞内的DNA复制过程相似的技术,其结果都是以原来的DNA为模板产生新的互补DNA片段。细胞中DNA的复制是一个非常复杂的过程。参与复制的有多种因素。PCR是在试管中进行的DNA复制反应,基本原理与细胞内DNA复制相似,但反应体系相对较简单。

PCR由变性--退火--延伸三个基本反应步骤构成:①模板DNA的变性:模板DNA经加热至94℃左右一定时间后,使模板DNA双链或经PCR扩增形成的双链DNA解离,使之成为单链,以便它与引物结合,为下轮反应做准备;

②模板DNA与引物的退火(复性):模板DNA经加热变性成单链后,温度降至55℃左右,引物与模板DNA单链的互补序列配对结合;

③引物的延伸:DNA模板--引物结合物在Taq酶的作用下,以dNTP为反应原料,靶序列为模板,按碱基配对与半保留复制原理,合成一条新的与模板DNA 链互补的半保留复制链。

重复循环变性--退火--延伸三过程,就可获得更多的“半保留复制链”,而且这种新链又可成为下次循环的模板。每完成一个循环需2~4分钟, 2~3小时就能将待扩目的基因扩增放大几百万倍。

参考资料来源:百度百科-pcr扩增

以上就是关于python小程序--实现DNA到RNA的转换全部的内容,包括:python小程序--实现DNA到RNA的转换、PCR和DNA复制有什么异同点、模拟人生4dna怎么克隆等相关内容解答,如果想了解更多相关内容,可以关注我们,你们的支持是我们更新的动力!

欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/zz/10075664.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-05-05
下一篇 2023-05-05

发表评论

登录后才能评论

评论列表(0条)

保存