PC电源中主动pfc和被动PFC的详细工作原理!

PC电源中主动pfc和被动PFC的详细工作原理!,第1张

电压电流之间的相位差(Φ)的余弦叫做功率因数,用符号cosΦ表示,在数值上,功率因数是有功功率和视在功率的比值,即cosΦ=P/S

功率因数越高,电源电压与负荷电流间的相位差就越小。'

功率因数校正电路(PFC)工作原理及应用

功率因数校正(英文缩写是PFC)是目前比较流行的一个专业术语。PFC是在20世纪80年代发展起来的一项新技术,其背景源于离线开关电源的迅速发展和荧光灯交流电子镇流器的广泛应用。PFC电路的作用不仅仅是提高线路或系统的功率因数,更重要的是可以解决电磁干扰(EMI)和电磁兼容(EMC)问题。

线路功率因数降低的原因及危害导致功率因数降低的原因有两个,一个是线路电压与电流之间的相位角中,另一个是电流或电压的波形失真。前一个原因人们是比较熟悉的。而后者在电工学等书籍中却从未涉及。

功率因数(PF)定义为有功功率(P)与视在功率(S)之比值,即PF=P/S。对于线路电压和电流均为正弦波波形并且二者相位角Φ时,功率因数PF即为COSΦ。由于很多家用电器(如排风扇、抽油烟机等)和电气设备是既有电阻又有电抗的阻抗负载,所以才会存在着电压与电流之间的相位角Φ。这类电感性负载的功率因数都较低(一般为05-06),说明交流(AC)电源设备的额定容量不能充分利用,输出大量的无功功率,致使输电效率降低。为提高负载功率因数,往往采取补偿措施。最简单的方法是在电感性负载两端并联电容器,这种方法称为并联补偿

PFC方案完全不同于传统的“功率因数补偿”,它是针对非正弦电流波形而采取的提高线路功率因数、迫使AC线路电流追踪电压波形的瞬时变化轨迹,并使电流与电压保持同相位,使系统呈纯电阻性的技术措施。

长期以来,像开关型电源和电子镇流器等产品,都是采用桥式整流和大容量电容滤波电路来实现AC-DC转换的。由于滤波电容的充、放电作用,在其两端的直流电压出现略呈锯齿波的纹波。滤波电容上电压的最小值远非为零,与其最大值(纹波峰值)相差并不多。根据桥式整流二极管的单向导电性,只有在AC线路电压瞬时值高于滤波电容上的电压时,整流二极管才会因正向偏置而导通,而当AC输入电压瞬时值低于滤波电容上的电压时,整流二极管因反向偏置而截止。也就是说,在AC线路电压的每个半周期内,只是在其峰值附近,二极管才会导通(导通角约为70°)。虽然AC输入电压仍大体保持正弦波波形,但AC输入电流却呈高幅值的尖峰脉冲,如图l所示。这种严重失真的电流波形含有大量的谐波成份,引起线路功率因数严重下降。若AC输入电流基波与输入电压之间的位移角是Φ1,根据傅里叶分析,功率因数PF与电流总谐波失真(度)THD之间存在下面关系:

实测表明,对于未采取PFC措施的电子镇流器,仅三次谐波就达60%(以基波为100%),THD会超过电流基波,PF不超过06。线路功率因数过低和电流谐波含量过高,不仅会对造成电能巨大浪费,而且会对电力系统产生严重污染,影响到整个电力系统的电气环境,包括电力系统本身和广大用户。因此,IEC1000-3-2《家用电器及类似类电气设备发出的谐波电流》和IEC929(GB/T15144)《管形荧光灯交流电子镇流器的性能要求》等标准,都对AC线路电流谐波作出了具体的要求

为提高线路功率因数,抑制电流波形失真,必须采用PFC措施。PFC分无源和有源两种类型,目前流行的是有源PFC技术。

1 无源PFC电路

无源PFC电路不使用晶体管等有源器件,而是由二极管、电阻、电容和电感等无源元件组成。无源PFC电路有很多类型,其中比较简单的无源PFC电路由三只二极管和两只电容组成,如图2所示。这种无源PFC电路的工作原理是:当50Hz的AC线路电压按正弦规律由0向峰值Vm变化的1/4周期内(即在0<t≤5ms期间),桥式整流器中二极管VD2和VD3导通(VD1和VD4截止),电流对电容C1并经二极管VD6对C2充电。当VAC,瞬时值达到Vm,因C1=C2,故C1和C2上的电压相同,均为1/2Vm,当AC线路电压从峰值开始下降时,电容C1通过负载和二极管VD5迅速放电,并且下降速率比AC电压按正弦规律下降快得多,故直到AC电压瞬时值达到1/2Vm之前,VD2和VD3一直导通。当瞬时AC电压幅值小于1/2Vm时,电容C2通过VD7和负载放电。当AC输入电压瞬时值低于无源PFC电路的DC总线电压时,VD2和VD3截止,AC电流不能通过整流二极管,于是IAC出现死区。在AC电压的负半周开始后的一段时间内,VD1和VD4不会马上导通。只有在AC瞬时电压高于桥式整流输出端的DC电压时,VD1和VD4才能因正向偏置而导通。 一旦VD1和VD4导通,C1和C2再次被充电,于是出现与正半周类似的情况,得到图3所示的AC线路输入电压VAC和电流IAC波形。

从图3可以看出,采用无源PFC电路取代单只电容滤波,整流二极管导通角明显增大(大于120°),AC输入电流波形会变得平滑一些。在选择C1=C2=10µF/400V的情况下,线路功率因数可达092~094,三次电流谐波仅约12%,五次谐波约18%,总谐波失真THD约28~30%。但是,这种低成本的无源PFC电路的DC输出电压纹波较大,质量较差,数值偏低(仅约240V),电流谐波成份并不能完全达到低畸变要求。当其应用于电子镇流器时,因其DC输出电压脉动系数偏大,灯电流波峰比达2以上,超出17的要求。欲提高无源PFC的效果,电路则变得复杂,人们理所当然地会选择有源PFC方案。

有源PFC升压变换器

有源PFC电路相当复杂,但半导体技术的发展为该技术的应用奠定了基础。基于功率因数控制IC的有源PFC电路组成一个DC-DC升压变换器,这种PFC升压变换器被置于桥式整流器和一只高压输出电容之间,也称作有源PFC预调节器。有源PFC变换器后面跟随电子镇流器的半桥逆变器或开关电源的DC-DC变换器。有源PFC变换器之所以几乎全部采用升压型式,主要是在输出功率一定时有较小的输出电流,从而可减小输出电容器的容量和体积,同时也可减小升压电感元件的绕组线径。

PFC变换器有不同的分类方法。按通过升压电感元件电流的控制方式来分,主要有连续导通模式(CCM)、不连续导通模式(DCM)及介于CCM与DCM之间的临界或过渡导通模式(TCM)三种类型。不论是哪一种类型的PFC升压变换器,都要求其DC输出电压高于最高AC线路电压的峰值。在通用线路输入下,最高AC线路电压往往达270V,故PFC变换器输出DC电压至少是380V(270V√2V),通常都设置在400V的电平上。

工作在CCM的PFC变换器,输出功率达500W以上乃至3kW,在DCM工作的PFC变换器,输出功率大多在60~250W,应用比较广泛,故在此作重点介绍。

工作于DCM的有源PFC升压变换器控制IC有几十种型号,如ST公司生产的L6560、西门子公司生产的TDA4817/TDA4862、摩托罗拉公司生产的MC33261/MC34261、三星公司生产的KA7524/KA7526、硅通公司生产的SG3561等。其中,L6560、KA7524/KA7526和MC33261等,在国内直接可以采购,应用比较广泛。这些器件全部采用8引脚DIP或SO封装,芯片电路组成大同小异,其基本组成包括以电压误差放大器为中心的电压控制环路和以一象限乘法器、电流感测比较器及零电流检测器等构成的电流控制环路。图4示出了DCM升压型PFC控制IC的内部结构及由其组成的预变换器电路。

这种PFC升压变换器的工作原理如下:当接通AC线路后,由于电容C1容值仅为01~022 µ F,只用作高频旁路,故桥式整流输出为100Hz的正弦半波脉动电压(VR),亦即AC半正矢。通过电阻R3的电流对电容C3充电,当C3上的电压升至IC的启动门限(大多为11V左右)以上时,接通IC电源电压(VCC),IC开始工作,并驱动PFC开关VT1动作。一旦PFC升压变换器进入正常运行状态,升压电感器T1的次级绕组则感生高频脉冲信号,经二极管VD5整流和电容C3滤波,为IC提供工作电压和电流。桥式整流后的AC输入电压,经R1和R2组成的电阻分压器分压,作为乘法器的一个输入(VM1)。升压变换器的DC输出电压,在电阻分压器下部电阻R9上的分压信号,反馈到IC误差放大器的反相输入端,并与误差放大器同相输入端上的参考电压VREF比较,产生一个DC误差电压VEAO,也输入到乘法器。乘法器的输出VMO是两个输入(VM1和VM2)的结果,作为IC电流感测比较器的参考。当IC驱动VT1导通时,升压二极管VD6截止,流过L的电流从0沿斜坡线性增加,并全部通过VT1和地回复。一旦IL在开关周期内达到峰值,VT1上的驱动PWM脉冲变为零电平,VT1截止,电感器L中的储能使VD6导通,通过L的电流IL,沿向下的斜坡下降。一旦IL降为零,L的次级绕组产生一个突变电势被IC的零电流检测器接收,IC产生一个新的输出脉冲驱动VT1再次导通,开始下一个开关周期。IC的电流检测逻辑电路同时受零电流检测器和电流传感比较器的控制,可确保在同一时刻IC只输出一种状态的驱动信号。VT1源极串联电阻R7用作感测流过VT1的电流。只要R7上的感测电压超过电流传感比较器的触发门限电平,PFC开关VT1则截止。当AC线路电压从零按正弦规律变化时,乘法器输出VMO为比较器建立的门限强迫通过L的峰值电流跟踪AC电压的轨迹。在各个开关周期内电感峰值电流形成的包迹波,正比于AC输入电压的瞬时变化,呈正弦波波形。在两个开关周期之间,有一个电流为零的点,但没有死区时间,从而使AC电流通过桥式整流二极管连续流动(二极管的导通角几乎等于180°),整流平均电流即为AC输人电流(为电感峰值电流的1/2),呈正弦波波形,且与AC线路电压趋于同相位,因而线路功率因数几乎为1(通常为098~0995),电流谐波含量符合IEC1000-3-2标准的规定要求。与此同时,由于PFC电压控制环路的作用,PFC变换器输出经提升的稳压DC电压,纹波很大,频率为100Hz,同样为正弦波。其控制原理与开关电源一样,其DC输出电压在90~270V的AC输入电压范围内保持不变。

在DCM下工作的PFC升压变换器相关电压和电流波形如图5所示,图6为AC线路输入电压和电流波形。

事实上,工作于DCM的PFC升压变换器开关频率不是固定的。在AC输入电压从0增大的峰值时,开关频率逐渐降低。在峰值AC电压附近,开关周期最大,而频率最低。在连续模式(CCM)下工作的PFC升压变换器采用固定频率高频PWM电流平均技术。这类变换器的开关占空比是变化的,但开关周期相同。通过升压电感器和PFC开关MOSFET的电流在AC线路电压的半周期之内(即0<t<T/2),任何时刻都不为0,而是时刻跟踪AC电压的变化轨迹,其平均电流(IAC)呈正弦波形,且与AC电压同相位,如图7所示。工作在CCM下的PFC变换器与DCM的变换器相比,有更低的波形畸变。THD降至5%左右。

CCM功率因数控制器IC的代表性产品有UC1854、ML4821,LT1248、LT1249、L4981和NCP1650等,这些IC大多采用16引脚封装,其共同特征之一是内置振荡器。像开关电源用PWM/PFC组合IC(如ML4803和CM6800等)中的PFC电路,全部属于CCM平均电流这一类型

除DCM和CCM的PFC变换器之外,还有一种变换器工作在过渡模式(TM),代表性控制器有L6561等。L6561内置THD最佳化电路,在误差放大器输出端外部可连接RC补偿网络,提供更低的AC输入电流失真及保护功能。由L6561组成的PFC升压变换器,输出功率达300W。

应用简介

无源PFC电路主要用于40W以下电子镇流器中。由于有源PFC控制IC价格比较便宜,无源PFC电路目前很少被人们采用。

有源PFC预变换器越来越多地被用于荧光灯和高压钠灯及金卤灯电子镇流器、高端AC-DC适配器/充电器和彩电、台式PC、监视器及各种服务器开关电源前端,以符合IEC1000-3-2等标准要求。此外,有源PFC技术还被用于电机调速器等产品中。

图8示出了采用有源PFC升压变换器的2×40W双管荧光灯电子镇流器电路。AC线路输入端L1、C1与C2及C3和C4组成EMI滤波器,PFC控制器KAT7524、磁性元件T1、功率开关VT1、升压二极管VD2及输出电容器C10等,组成有源PFC升压变换器,磁环脉冲变压器T2.功率开关VT3和VT2及R14、C11和双向触发二极管D1AC(DB3)组成的振荡启动电路构成半桥逆变器电路,12、C12和L3、C13组成LC串联谐振(灯启动)电路。由于采用了有源PFC升压变换器电路,电子镇流器在AC线路电压为220V额定条件下,变换器效率达96%,输入线路功率因数PF≥0993,AC输入电流总谐波失真THD≤1099%,其中二次谐波为051%,三次谐波为96%,五次谐波为47%,七次谐波为146%。电子镇流器AC输入电压总谐波含量为423%。

有源PFC升压变换器在开关电源应用中,为减少电路元件数量和印制电路板(PCB)空间,提高功率密度,大多是将PFC控制电路与PWM控制器组合在一起,集成到同一芯片上,从而提高了开关电源的性能价格比,同时也简化了设计。

pfc电路原理在输入交流电压之前加入一个电容器,使电荷提前存储,从而减少负载中的瞬时电流波动。

1、PFC电路是一种功率因数校正电路,其作用是改善交流电源负载的功率因数。传统的交流电源负载对于电网来说,功率因数较低,会产生不必要的能量损失和电网污染。

2、而PFC电路则可以通过控制电流波形的方式提高功率因数,降低能量损耗和电网污染,提高设备的稳定性和寿命。

3、常见的PFC电路有单级整流PFC电路和双级整流PFC电路两种。单级整流PFC电路通常采用整流桥和直流电容器实现,而双级整流PFC电路则在单级整流PFC电路的基础上增加了一个DC-DC转换器,以进一步提高功率因数和效率。

4、目前,PFC电路被广泛应用于计算机、电视、照明等各个领域的电子设备中。

pfc电路的发明与发展历程:

1、PFC电路的发明可以追溯到20世纪80年代。早期的研究主要是在欧洲进行,德国、瑞士等国家的学者都做出了重要贡献。

2、其中,德国Konrad Reif博士被认为是PFC电路的创始人之一,他在1982年开发出了第一个实用的PFC电路,并于1984年申请了相关专利。

3、此后,越来越多的研究人员和企业加入到PFC电路的研究和应用中,逐步推动了该技术的发展和普及。现在,PFC电路已经成为许多电子产品中的标配,对于提高设备效率和保护环境都具有重要意义。

要弄明白是主动的还是被动的PFC一:PFC的英文全称为“Power Factor Correction”,意思是“功率因数校正”,功率因数指的是有效功率与总耗电量(视在功率)之间的关系,也就是有效功率除以总耗电量(视在功率)的比值。 基本上功率因素可以衡量电力被有效利用的程度,当功率因素值越大,代表其电力利用率越高。计算机开关电源是一种电容输入型电路,其电流和电压之间的相位差会造成交换功率的损失,此时便需要PFC电路提高功率因数。目前的PFC有两种,一种为被动式PFC(也称无源PFC)和主动式PFC(也称有源式PFC)。

被动式PFC

被动式PFC一般采用电感补偿方法使交流输入的基波电流与电压之间相位差减小来提高功率因数,被动式PFC包括静音式被动PFC和非静音式被动PFC。被动式PFC的功率因数只能达到07~08,它一般在高压滤波电容附近。

主动式PFC

而主动式PFC则由电感电容及电子元器件组成,体积小、通过专用IC去调整电流的波形,对电流电压间的相位差进行补偿。主动式PFC可以达到较高的功率因数──通常可达98%以上,但成本也相对较高。此外,主动式PFC还可用作辅助电源,因此在使用主动式PFC电路中,往往不需要待机变压器,而且主动式PFC输出直流电压的纹波很小,这种电源不必采用很大容量的滤波电容。

串60w灯泡维修,灯泡一直亮,继电器一直响。就短接了继电器强电输出端。结果通电,灯泡一直闪亮着,就断开pfc后面的二极管,灯不亮了,说明300v整流没问题,断开LED背光电路及主电源的380供电,还是闪亮,直到断开pfc电路的功率管d极,灯总算灭了,因为其d极直接接的300v,在pfc输出二极管的前面,所以开始没断开它。后来检修pfc电路也无果,后来测量了损坏的电容,发现有几k漏电电阻,而如果其他热地电路出现短路,灯泡应该常亮。就恢复了所有的电路,改串了一个100w的灯泡,嘿嘿一切正常了。pfc的机子看来得串100w灯泡才行用户一台42寸LCD液晶电视,拿来时不通电,检测高压电路损坏烧保险,修好棕绿棕。当时修好后发现开机时屏里面偶尔有轻微放电声,告知用户,用户说能不能搞好,我直接告诉用户LCD现在背光不好买好,要么直接改装LED,加价橙棕棕。

用户说不要紧吧,我说这样指不定什么时候坏,用户说先看了再说,谁知第二天就坏了。

然后拿来说改装背光,砍了绿黑黑。

再次检查,原高压电路上的4个MOS管,我换的两个没坏,但另外两个坏了,直接拆掉,220V串灯泡,测量电压5V正常,在CPU5V和PSON端加一1K电阻,测量12V和24V电压输出波动,后来检查到NCP1207第6脚VCC电压只有22V,断开6脚电压仍然22V,检查Q304,发射级148V和基级142V电压,集电级22V不正常,拆下测量是好的,再装上居然22V也没了,直接换个Q304(A1015),再次测量集电级有142V电压了,测量12V和24V电压为122V和224V(有点低),指示灯绿灯然后马上消失,突然闻到一股糊味儿。

翻地来一看R805和R200N居然坏了(其实R805相接的电路可以完全不要的,只是我没取,如:背光小板,两个小变压器和两个大逆变器)。

检查附近电路没有其它坏件,换上坏件后,清理修理台,串灯泡测量电压122V和224V出来了,手模那两个电阻不发热。

测量PFC电压只有300V没工作,经检测发现插件NCP1653A除了7脚无003V电压外,其它脚位电压都正常。手里也没NCP1653A,估计坏了。

接上改装好的LED再次开机LED正常点亮,电流170MA。

对于炸件的机器,大家都比较敏感,特别是看到SMA—E1017炸掉,FQA24N50击穿,在我们的心中就比较紧张,恐怕下次再开机时,还会出现这些原件再次炸掉的危险,甚至不知如何下手,才能将机器修好。

关于此类故障应该怎样维修,我想以下一些地方入手:

首先要分析一下元器件炸裂的原因,首先是PFC电路的场效应管为何击穿,究其原因无非两点:1场效应管过流。2场应管过压。我们知道场应管过流会损坏,为什么呢?因为在过流时,两个PN结会击穿,而更多的原因是由于Ton周期过长,场效应管在截止时反压过高而损坏。为什么呢?在硬开关中电路中,在开关管的集电极加上吸收回路来降低开关管截止时形成的高压。其电压的大小与电流的变化率成正比(正比于di/dt),也就是当开关管截止时,开关管的反压最高。对于软开关的电源又是如何呢,所谓软开关就是将开关管开关时的功耗降低趋向于0。{我们知道mosfet管的开关时呈阻性,在其饱和导通时呈低阻特性。在平板维修时我们会发现IRF7314,mosfet管的d、s两端的压降用我们的万用表是量不出来的,而普通三极管的饱和压降为03V。对于使用场效应管的开关电源,开关管之所以热,其原因就是因为其开关损耗严重。软开关是指ZCS(zero current switching零电流开关)和ZVS(zero voltage switching零电压开关)。}由上可知,开关管在截止时若使用软开关只能使用ZCS,在使用软开关时,开关在截止期间仍然有高压存在,而这个高压,只有零电流时出现。因为在谐振电路中,只有零电流时,电容和电感两端的电压达到最高。由此,我们可以知道当电流超过正常值时,开关管截止时的电压比正常时会高。当这个电压超过其极限值时就会击穿。也就是Ton的周期过长,会损坏开关管。我们修普通电源输出电压高,会损坏开关管原因就是如此。开关管过压会损坏,就不需要再说明了。

所以PFC电源炸件的问题如何解决应从如下入手:

开机炸件属于反馈检测电路有问题,其关键脚是9脚(pfb/ovp),该脚直接PFC输出电压的高低,及其过压保护。重点检查RE017、RE018这两个电阻阻值增大会出现PFC电压高,在早期的机器中出现比较多的是RE017、RE018阻值增大,造成CE019炸裂。还要注意CE017是否漏电。还有一个更为关键的脚就是10脚。该脚为CS,既然是CS而不是OCP,这就决定了它的功能是电流开关(CS为current switching电流开关,而ocp为over current protect 过流保护),该脚决定着Ton的时间,由下图可知:

2012100316324744606jpg

其中左边是一般PFC电源的原理图,右侧是PFC电流波形。由左图可知,PFC电源稳压主要是由输出电压的1/k分压后作为反馈量进行稳压的。这个1/k=re019/(re017+re018),由此我们知道re017和re018阻值增大、 ce017漏电,都会导致反馈量减小,pfc输出电压升高。早期的77系列的B+PFC爆电容的技改之一的R017、R018用五环精密电阻原因就是如此。右边的示意图中每一个锯齿波就是一个开关周期,这个锯齿波由峰值开始下降就是开关管由导通变截止的转折点。这个转折点在很大方面是由电流峰值检测控制的。所以要重点检查RE012、RE013、RE014,测量CE009是否漏电。还有一个问题,那就是灌流电路,在通常情况下,场效应管击穿,往往伴随着灌流电路的损坏,这部分电路也要多查一下,通常限流电阻,激励三极管会损坏,灌流电路的原件如检查有误,一般不会马上就烧场效应管,会有较长的滞后过程。那是因为灌流电路不好会造成激励不足,时间长了才会烧开关管,这种情况在修普通电源(TDA16846、TDA4605、MC44608等)时应该遇到过,我们应该修过。如开机一段时间后,感觉开关管特别烫,这种情况多属于激励有问题,要多查一下灌流电路的原件,这些原件在路基本能够测量出来,但是DE003不能在路测量,因为它并了一个68欧电阻,开关管损坏,这种二极管有时也会损坏。5VM、12V、14V电源的故障率比较低。常常是整流二极管损坏或是LM2576带载能力损坏,其它地方坏的比较少。还有就是24V电源的问题,24V的故障率比较高,因为这一部分占有整个电源70%输出功率,高压大电流是故障高发的原因。电源厚膜(STR—X6769 STR—W5667)损坏的比较多。对于此部分,常常出现的故障地方:对于STR—X6769厚膜有CE027、RE009、RER008的机率比较高,RE031、RE032、DE009、DE511也有损坏的,机率不是很高。对于CE027损坏的,在更换时,要选取耐压的电容(最好是2KV的),因为该电容不仅能起到开关管截止时产生高压的吸收作用,而且还提供谐振回路,给软开关提供最佳开关点,降低开关功耗。如果它损坏后,电源厚膜很快就会损坏。对于STR—W5667厚膜常坏的也是RE008、RE009,只是它还有几个并发出现的地方,RE033、RE034、光藕N004。由上我们可知,对于厚膜、场效应管损坏的。我们只要注意吸收回路、检测反馈回路及限流电阻就可以了。

被动式PFC

被动式PFC一般采用电感补偿方法使交流输入的基波电流与电压之间相位差减小来提高功率因数,被动式PFC包括静音式被动PFC和非静音式被动PFC。被动式PFC的功率因数只能达到07~08,它一般在高压滤波电容附近。

主动式PFC

而主动式PFC则由电感电容及电子元器件组成,体积小、通过专用IC去调整电流的波形,对电流电压间的相位差进行补偿。主动式PFC可以达到较高的功率因数──通常可达98%以上,但成本也相对较高。此外,主动式PFC还可用作辅助电源,因此在使用主动式PFC电路中,往往不需要待机变压器,而且主动式PFC输出直流电压的纹波很小,这种电源不必采用很大容量的滤波电容。

以上就是关于PC电源中主动pfc和被动PFC的详细工作原理!全部的内容,包括:PC电源中主动pfc和被动PFC的详细工作原理!、pfc电路原理、电脑电源的主动pfc和被动pfc是什么意思等相关内容解答,如果想了解更多相关内容,可以关注我们,你们的支持是我们更新的动力!

欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/zz/10087204.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-05-05
下一篇 2023-05-05

发表评论

登录后才能评论

评论列表(0条)

保存