数值模拟反问题常常转化为优化问题,函数优化就是求一个函数的最优值以及达到该最优值的最优点,而最优化算法本质上是一个最优值的搜索过程。经典的优化算法如牛顿法、单纯形法、共轭方向法、最速下降法和罚函数法等,一般对目标函数要求连续、可微甚至于高阶可微、单峰等;需要对函数求一阶、二阶导数;受初值影响较大,算法容易陷入局部最小值,对于多峰函数优化问题具有较大局限性。
20世纪80年代初期以来,地下水水流与溶质迁移模型和数值优化方法相结合越来越普遍,目前常用的主要有以下两种方法。
3471 数学规划方法
主要包括线性规划(LP),该方法广泛应用于线性目标函数及流量约束的地下水管理问题,解线性规划的软件主要有AQMAN,MODMAN,MODOFC,MODFLIP;非线性规划(NLP);混合整数线性规划(MILP);混合整数非线性规划(MINLP)。其中线性规划法计算效率较高,但仅适用于承压含水层,通常不能有效地处理溶质运移问题。非线性规划与动态规划的应用较广泛,计算效率上有优势,但需要计算目标函数对决策变量的导数即梯度,因此,该方法又被称为梯度法,在目标函数很复杂,而且为非线性时,结果往往会陷于一个局部最优解而不能识别全局最优解。
3472 全局优化方法
主要以启发式搜索技术为根据的一类优化方法,包括模拟退火法、遗传算法、禁忌搜索法、人工神经网络法、外围近似法等,这些方法有识别全局或接近全局范围内最优解的能力。全局优化法能够模仿一定的自然系统,通常计算量很大。本书主要介绍4种现阶段应用广泛发展较为迅速的优化算法。
遗传算法(Genetic Algorithms,GA)是一类借鉴生物界自然选择(Natural Selection)和自然遗传机制的随机搜索算法(Random Searching Algorithms),求解问题一般包括编码、计算适应度、选择、交叉、变异、循环回到计算适应度,反复进行直到满足终止条件。该算法是处理一般非线性数学模型优化的一类新的优化方法,对模型是否线性、连续、可微等不作限制,也较少受优化变量数目和约束条件的束缚,其本质是一种高效、并行、全局搜索的方法,能在搜索过程中自动获取和积累相关搜索空间的知识,并自适应地控制搜索过程以求得最优解。目前已广泛用于函数优化、参数辨识、机器学习、神经网络训练、结构设计和模糊逻辑系统等方面。常用的GA计算程序有MGO(Modular Groundwater Optimizer),模块化地下水优化程序,该程序是地下水水质管理的通用优化模型。将水流和迁移模拟程序与遗传算法相结合,能适应非线性复杂目标函数,能够处理水头、梯度、水流以及浓度等约束条件。SOMOS程序,实现了包括遗传算法和人工神经网络的优化算法,能处理经济、环境以及地下水管理体积等问题,同时SOMOS可以将MODFLOW和MT3DMS作为模型的组成部分进行运算。但是目前遗传算法的应用还存在明显的不足,主要表现为以下几点:
1)GA的算法设计和关键控制参数选择对优化性能的影响明显,直接影响算法的搜索效率和优化性能,甚至导致“早熟”收敛;
2)参数识别研究中的编码方案以二进制编码为主,计算量和存储量大。
人工神经网络(Artificial Neural Network,ANN)是由大量神经元通过极其丰富和完善的联结而构成的自适应非线性动态系统,它使用大量简单的相连的人工神经元来模仿生物神经网络的能力,从外界环境或其他神经元获得资讯,同时加以简单的运算,将结果输出到外界或其他人工神经元。神经网络在输入资讯的影响下进入一定状态,由于神经元之间相互联系以及神经元本身的动力学特性,这种外界刺激的兴奋模式会自动地迅速演变成新的平衡状态。人工神经网络是一种计算系统,包括软件与硬件,它使用大量简单相连的人工神经元来模仿生物神经网络的能力。人工神经网络是生物神经元的简单模拟,它从外界环境或者其他神经元取得资讯,同时加以非常简单的运算,输出其结果到外界环境或者其他人工神经元。人工神经网络系统反映了人脑功能的许多基本特性,但它并不是人脑神经系统的真实写照,而只是对其作某种简化、抽象和模拟,这也是当前的现实情况。是目前对人脑神经及其智能机理的研究水平所能做到的,对人脑智能机理的简化、抽象和模拟是人工神经网络研究的基本出发点。
支持向量机是基于统计学理论的VC维理论和结构风险最小化原理而提出的一种新的机器学习方法。与传统的神经网络学习方法相比,支持向量机从结构风险最小化原则出发,求解的是一个二次规划问题而得到全局最优解,有效地解决了模型选择与过学习问题、非线性和维数灾难以及局部极小等问题,在解决小样本、非线性、高维模式识别问题中表现出许多特有的优势。
模拟退火算法是对固体退火过程的模拟。在金属热加工工艺中,将金属材料加热到某一高温状态后,让其慢慢冷却,随着温度的降低,物质的能量将逐渐趋近于一个较低的状态,并最终达到某种平衡。模拟退火算法是基于金属退火的机理而建立的一种全局最优化方法,它能够以随机搜索技术从概率的意义上找出目标函数的全局最小点。模拟退火算法的主要缺点是解的质量与求解时间之间存在矛盾,该算法对于多应力期模型和大量水文地质参数的反演,收敛缓慢,得不到满意的结果。
物距成像法又被称为共轭法对。共轭方向法(conjugatedirectionmethod)依次沿共扼方向寻求无约束最优化问题极小点的一类方法。共轭方向法以一组共轭方向作为搜索方向来求解无约束非线性规划问题的一类下降算法。
牛顿法的特点
牛顿法收敛很快,对于二次函数只需迭代一次便达到最优点,对非二次函数也能较快
迭代到最优点,但要计算二阶偏导数矩阵及其逆阵,对维数较高的优化问题,其计算工作
和存储量都太大。
阻尼牛顿法
可以看出原始牛顿法就相当于阻尼牛顿法的步长因子取成固定值
1
的情况。阻尼牛顿
法每次迭代都在牛顿方向上进行一维搜索,避免了迭代后函数值上升的现象,从而保持了
牛顿法二次收敛的特性,而对初始点的选取并没有苛刻的要求。
这类方法的主要缺点计算复杂,工作量大,要求计算机存储量大。
共轭方向
共轭方向主要是针对二次函数的,但也可以用于一般非二次函数。共轭方向法是二次
收敛的;
Z的共轭和Z分之一的关系:用柯西黎曼方程验证即可,令f(z)=z共轭=x-iy,所以u'x=1,v'y=-1。
(1)|z|=|z′|。
(2)z+z′=2a(实数),z-z′=2bi。
(3)z• z′=|z|^2=a^2+b^2(实数)。
(4)z〃=z。
共轭方向法
以一组共轭方向作为搜索方向来求解无约束非线性规划问题的一类下降算法。是在研究寻求具有对称正定矩阵Q的n元二次函数f(x)=1/2xQ x+bx+c,最优解的基础上提出的一类梯度型算法,包含共轭梯度法和变尺度法。根据共轭方向的性质,依次沿着对Q共轭的一组方向作一维搜索,则可保证在至多n步内获得二次函数的极小点。
电感和电容的串并联方式相反。在L型网络法中,阻抗匹配方向何时共轭取决于电感和电容的串并联方式,如果电感和电容的串并联方式相同,则阻抗匹配方向不共轭,如果电感和电容的串并联方式相反,则阻抗匹配方向共轭。
e1与e2的共轭正交是椭圆。二维的问题,ϕ ( x ) \phi(x)ϕ(x)的等高线是椭圆,由于A是对角阵,所以对称轴于行于坐标轴,且e1与e2对于A是共轭;当A,不再是对角矩阵时,e1与e2 不再是A的共轭方向。坐标方向法:当原始问题对应的矩阵A非对角时,我们可以对原问题作线性变化,使得新的newA 是对角的,然后可以使用共轭方向法在n 部内求得最优点。特征向量,和Gram -Schmidt 正交化。对于第一种有对于实对称矩阵属于不同特征值的特征向量相互正交,因此可以推出来这些特征向量对于A 是共轭的。所以,e1与e2的共轭正交是椭圆。
以上就是关于数学模型反演解法概述全部的内容,包括:数学模型反演解法概述、物距成像法又被称为共轭法吗对吗、原始牛顿法和阻尼牛顿法的区别等相关内容解答,如果想了解更多相关内容,可以关注我们,你们的支持是我们更新的动力!
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)