微处理器主要具有运算器和控制器功能。
微处理器(英语:Microprocessor,缩写:µP或uP)通常指称一种可编程特殊集成电路,其所有组件小型化至一块或数块集成电路内。微处理器可在其一端或多端接受编码指令,执行此指令并输出描述其状态的信号。这些指令能在内部输入、集中或存放。
微处理器的组件常安装在一个单片上或在同一组件内,但有时分布在一些不同芯片上。在具有固定指令集的微型计算机中,微处理器由算术逻辑单元和控制逻辑单元组成;在具有微程序控制的指令集的微型计算机中,它包含另外的控制存储单元。
微处理器的发展
正如近现代其他科技的发展一样,微处理器时代仿佛一夜之间就到来了。三个公司,三个计划,几乎不约而同地成为微处理器产业的先锋。它们就是英特尔的Intel 4004,德州仪器公司的TMS 1000和盖瑞特艾雷赛奇(Garrett AiResearch)工业部的CADC(Central Air Data Computer)for F14 MP944。
1968年盖瑞特被邀请参加研制一种数字计算机,以同正在开发中的用于美国海军F-14雄猫战斗机的主飞行控制电脑的电机系统竞争。这个以基于MOS(金属氧化物半导体)技术的芯片组为核心的CPU于1970年设计完成,并以更小的体积和更高的可靠性打败了基于电机系统的设计,被运用于早期的所有雄猫战斗机。但今天看来,知道CADC和MP944芯片组的人并不多,主要原因在于美国海军认为这种技术太过先进而不允许将其设计细节公开,这种情况一直持续到1997年。
1、反馈控制方式:是控制系统的主要控制方式。自动控制原理的主要研究对象是反馈控制系统。优点:能够抑制任何内外扰动对被控量的影响,控制精度高;缺点:结构复杂,可能出现系统不稳定问题,系统分析和设计较困难。2、开环控制方式:信号从系统输入端顺向流到系统输出端,输出量的6变化不会对控制作用产生影响。该控制方式也称为顺馈控制方式。开环控制方式的控制器必须针对作用信号类别和类型设计。优点:结构简单,系统分析和设计较简便。缺点:不能补偿其他因素对系统输出的影响。主要分类控制器分组合逻辑控制器和微程序控制器,两种控制器各有长处和短处。组合逻辑控制器设计麻烦,结构复杂,一旦设计完成,就不能再修改或扩充,但它的速度快。微程序控制器设计方便,结构简单,修改或扩充都方便,修改一条机器指令的功能,只需重编所对应的微程序;要增加一条机器指令,只需在控制存储器中增加一段微程序,但是,它是通过执行一段微程。具体对比如下:组合逻辑控制器又称硬布线控制器,由逻辑电路构成,完全靠硬件来实现指令的功能。
储存控制器是用来存储各段微程序的。
微程序控制器是一种控制器,同组合逻辑控制器相比较,具有规整性、灵活性、可维护性等一系列优点,因而在计算机设计中逐渐取代了早期采用的组合逻辑控制器,并已被广泛地应用,在计算机系统中,微程序设计技术是利用软件方法来设计硬件的一门技术。
实验三微程序设计 一、 实验目的:
1掌握时序产生器的组成及工作原理;掌握微程序控制器的组成及工作原理; 2根据给出的指令系统、微指令格式、微命令的字段译码方案、地址转移逻辑电路分别设计部分微程序流程图、微指令的二进制代码; 3掌握微程序的编制、写入和读出验证的方法;
4根据给出的汇编语言和机器语言源程序,通过改变SE1~SE6的值,模拟P(1)测试,观察微程序的运行过程,掌握由微程序解释机器语言源程序的工作原理。 二、实验设备
TDN-CM+计算机组成原理教学实验系统一台。
三、实验内容
1实验原理
实验所用的时序电路原理如图5-1所示,可产生4个等间隔的时序信号TS1-TS4,其中φ为时钟信号,由实验台左上方的方波信号源提供,可产生频率及脉宽可调的方波信号。学生可根据实验自行选择方波信号的频率及脉宽。为了便于控制程序的运行,时序电路发生器也设置了一个启停控制触发器Cr,使TS1-TS4信号输出可控。图5-1中STEP(单步)、STOP(停机)分别是来自实验台上方中部的两个二进制开关STEP、STOP的模拟信号。START键是来自实验板上方中部的一个微动开关START的按键信号。当STEP的开关为0时(EXEC),一旦按下启动键,运行触发器Cr一直处于“1”状态,因此时序信号TS1-TS4将周而复始地发送出去。当STEP为1(STEP)时,一旦按下启动键,机器便处于单步运行状态,即此时只发送一个CPU周期的时序信号就停机。利用单步方式,每次只读一条微指令,可以观察微指令的代码与当前微指令的执行结果。另外,当机器连续运行时,如果STOP开关置“1”(STOP),也会使机器停机。
由于时序电路的内部线路已经连好,所以只需将时序电路与方波信号源连接(即将时序电路的时钟脉冲输入端φ接至方波信号发生器输出端H23),时序电路的CLR已接至实验板右下方的CLR模拟开关上。
2微程序控制电路与微指令格式 (1)微程序控制电路
微程序控制器的组成见图5-2,其中控制存储器采用3片2816的EPROM,具有掉电保护功能,微命令寄存器18位,用两片8D触发器(74LS273)和一片4D(74LS175)触发器组成。微地址寄存器6位,用三片正沿触发的双D触发器(74LS74)组成,它们带有清“0”端和预置端。在不判别测试的情况下,T2时刻打入微地址寄存器的内容即为下一条微指令
2
的微地址。当T4时刻进行测试判别时,转移逻辑满足条件后输出的负脉冲通过强置端将某一触发器置为“1”状态,完成微地址的多路转移功能。
在该实验电路中设有一个编程开关(位于实验台中部上方),它具有三种状态:PROM(编程)、READ(校验)、RUN(运行)。当处于“编程状态”时,学生可根据微地址和微指令格式将微指令二进制代码写入到控制存储器2816中。当处于“校验状态”时,可以对写入控制存储器中的二进制代码进行验证,从而可以判断写入的二进制代码是否正确。当处于“运行状态”时,只要给出微程序的入口微地址,则可根据微程序流程图自动执行微程序。图中微地址寄存器输出端增加了一组三态门,目的是隔离触发器的输出,增加抗干扰能力,并用来驱动微地址显示灯。
如图5-1
(2)微指令格式
微指令字长共24位,其微指令格式及每位的功能如表5-1所示。
表5-1 微指令格式及字段译码功能
A、B、C字段经过译码器译码后的信号使用说明:
A字段 B字段 C字段
A9、A8经译码器译码后的信号使用说明:
计数器存储器RAM6116:
功能 不选择 读 写 其中UA5-UA0为6位的后续微地址,A、B、C为三个译码字段,分别由三个控制位译码出多位。C字段中的P(1)-P(4)是四个测试字位。其功能是根据机器指令及相应微代码进行译码,使微程序转入相应的微地址入口,从而实现微程序的顺序、分支、循环运行,其原理如图5-3所示,图中I7-I2为指令寄存器的第7-2位输出,SE6-SE1为微程序控制器单元微地址锁存器的异步置“1”输入端。AR为算术运算是否影响进位及判零标志控制位,其为低电零有效。B字段中的RS-B、RD-B、RI-B分别为源寄存器选通信号、目的寄存器选通
信号及变址寄存器选通信号(均为低电平有效),其功能是根据机器指令来进行三个工作寄存器R0、R1及R2的选通译码,其原理如图5-4,图中I0-I3为指令寄存器的第0-3位,LDRi为打入工作寄存器信号的译码器使能控制位,高电平有效。
3.汇编指令格式和指令系统
助记符号 指令格式 功能
IN Rd 0000 ×× Rd (SW)-->Rd
ADD Rd×× Rd d)+(addr)-->Rd addr
STA Rds ××s)-->addr addr
×× ××addr
×× ××addr
说明:指令格式中IN指令为单字长(8位)指令,其它指令为双字长指令(16位),指令格式中给出了各条指令的 *** 作码编码,Rs为源寄存器编码(共2位),Rd为目的寄存器编码(共2位)。
4实验步骤
(1)图5-5给出了几条机器指令对应的参考微程序流程图,设计ADD和JMP机器指令对应的微程序流程图,将有关的微程序按微指令格式编写二进制代码,填入表5-2所示的二进制代码表。
运行微程序
表5-2 微指令的二进制代码表
(2)按图5-6连接实验线路,仔细查线无误后接通电源。
(3)观测时序信号
用双踪示波器(或用PC示波器功能)观察方波信号源的输出,时序电路中的“STOP”开关置为“RUN”,“STEP”开关置为“EXEC”。按动START按键,从示波器上可观察到TS1、TS2、TS3、TS4各点的波形,比较它们的相互关系,画出其波形,并标注测量所得到的脉冲宽度,如图5-7所示。
(4)观察微程序控制器的工作原理: ①编程
A将编程开关置为PROM(编程)状态;
B将实验板上“STATE UNIT”中的“STEP”置为“STEP”,“STOP”置为“RUN”状态; C用二进制模拟开关置微地址MA5-MA0;
D在MK24-MK1开关上置微代码,24位开关对应24位显示灯,开关量为“0”时灯亮,
开关量为“1”时灯灭;
E启动时序电路(按动启动按钮“START”),即将微代码写入到E2PROM(2816)的相
应地址对应的单元中;
F重复C-E步骤,将表5-2的微代码写入到2816。 ②校验
A将编程开关设置为READ(校验)状态;
B将实验板的“STEP”开关置为“STEP”状态,“STOP”开关置为“RUN”状态; C用二进制开关置好微地址MA5-MA0;
D按动“START”键,启动时序电路,读出微代码。观察显示灯MD24-MD1的状态(灯
亮为“0”,灯灭为“1”),检查读出的微代码是否与写入的相同。如果不同,则将开关置于PROM编程状态,重新执行①即可。
③单步运行
A将编程开关置于“RUN(运行)”状态;
B将实验板的“STEP”开关置为“STEP”状态,“STOP”开关置为“RUN”状态; C *** 作CLR开关(拨动开关在实验板右下角)使CLR信号1->0->1,微地址寄存器
MA5-MA0清零,从而明确本机的运行入口微地址为000000(二进制);
D按动“START”键,启动时序电路,则每按动一次启动键,读出一条微指令后停机,
此时实验台上的微地址显示灯和微命令显示灯将显示所读出的一条指令。
注意:在当前条件下,可将“MICR0-CONTROLLER”单元的SE6-SE1接至“SWITCH UNIT”中的S3-Cn对应二进制开关上(即:将SE1-SE6对应二进制开关置为“1”),当需要人为设置分支地址时,可通过强制端SE1-SE6人为设置分支地址,将某个或某几个二进制开关置为“0”,相应的微地址位即被强置为“1”,从而改变下一条微指令的地址。(二进制开关置为“0”,相应的微地址位将被强置为“1”)
④连续运行
A将编程开关置为“RUN(运行)”状态;
B将实验板的单步开关“STEP”置为“EXEC”状态,“STOP”开关置为“RUN”状态; C使CLR从1->0->1,此时微地址寄存器清“0”,从而给出取指微指令的入口地址
为000000(二进制);
D启动时序电路,则可连续读出微指令。
思考题:
1为什么取指周期在这里要占用2个CPU周期?
2在解释OUT指令时,17、25微地址的微指令所完成的 *** 作为什么不能由一条微指令实现?
3在向RAM写入机器码时,24、30微地址的微指令所完成的 *** 作为什么不能由一条微指令实现?
注意事项
1、所有导线使用前须测通断; 2、不允许带电接线; 3、“0”——亮 “1”——灭;
4、注意连接线的颜色、数据的高低位。
控制器被分为硬连线控制器和微程序控制器两大类。
微程序的控制器和组合逻辑的控制器是计算机中两种不同类型的控制器。
共同点:基本功能都是提供计算机各个部件协同运行所需要的控制信号;组成部分都有程序计数器PC,指令寄存器IR;都分成几个执行步骤完成每一条指令的具体功能。
不同点:主要表现在处理指令执行步骤的办法,提供控制信号的方案不一样。微程序的控制器是通过微指令地址的衔接区分指令执行步骤,应提供的控制信号从控制存储器中读出,并经过一个微指令寄存器送到被控制部件。组合逻辑控制器是用节拍发生器指明指令执行步骤,用组合逻辑电路直接给出应提供的控制信号。
_微程序的控制器的优点是设计与实现简单些,易用于实现系列计算机产品的控制器,理论上可实现动态微程序设计,缺点是运行速度要慢一些。组合逻辑控制器的优点是运行速度明显地快,缺点是设计与实现复杂些,但随着EDA工具的成熟,该缺点已得到很大缓解。
一、CPU三个组成部分
运算器,控制器,存储器。
二、功能
1、运算器:
计算机运行时,运算器的 *** 作和 *** 作种类由控制器决定。运算器处理的数据来自存储器;处理后的结果数据通常送回存储器,或暂时寄存在运算器中。与ControlUnit共同组成了CPU的核心部分。
2、控制器:
控制单元负责程序的流程管理。正如工厂的物流分配部门,控制单元是整个CPU的指挥控制中心,由指令寄存器IR、指令译码器ID和 *** 作控制器OC三个部件组成,对协调整个电脑有序工作极为重要。
3、存储器:
计算机的存储器可分成内存储器和外存储器。内存储器在程序执行期间被计算机频繁地使用,并且在一个指令周期期间是可直接访问的。
三、与内存的关系
当程序或者 *** 作者对CPU发出指令,这些指令和数据暂存在内存里,在CPU空闲时传送给CPU,CPU处理后把结果输出到输出设备上,输出设备就是显示器,打印机等。
在没有显示完之前,这些数据也保存在内存里,如果内存不足,那么系统自动从硬盘上划分一部分空间作为虚拟内存来用。
但写入和读取的速度 跟物理内存差的很远很远,所以,在内存不足的时候,会感到机器反应很慢,硬盘一直在响。
扩展资料:
无论哪一个种类的控制单元,原理均为通过控制单元发出的控制信号对CPU各个部分加以控制。控制单元大体可以分为以下两类。
1、微程序式,由微程序读取和发出控制信号。通过被称为微型定序器的简单数字通路(微型电脑)对微程序加以执行
2、硬件型控制单元。由数字通路直接发出控制信号。由于集成电路的规模化及设计技术的进步,此种控制单元已成为可能。
实现运算器的 *** 作,特别是四则运算,必须选择合理的运算方法。它直接影响运算器的性能,也关系到运算器的结构和成本。
另外,在进行数值计算时,结果的有效数位可能较长,必须截取一定的有效数位,由此而产生最低有效数位的舍入问题。选用的舍入规则也影响到计算结果的精确度。
构成存储器的存储介质主要采用半导体器件和磁性材料。存储器中最小的存储单位就是一个双稳态半导体电路或一个CMOS晶体管或磁性材料的存储元,它可存储一个二进制代码。由若干个存储元组成一个存储单元,然后再由许多存储单元组成一个存储器
参考资料:
百度百科-存储器
百度百科-运算器
百度百科-控制单元
控制存储器。
微程序通常是存放在(控制存储器)中,用户可改写的控制存储器由(EPROM)组成。储存控制器是用来存储各段微程序的。
微程序控制器的基本工作原理:根据IR(指令寄存器)中的 *** 作码,找到与之对应的控存中的一段微程序的入口地址,并按指令功能所确定的次序,逐条从控制存储器中读出微指令,以驱动计算机各部件正确运行。
得到下一条微指令的地址的有关技术:要保证微指令的逐条执行,就必须在本条微指令的执行过程中,能得到下一条微指令的地址。
以上就是关于微处理器的功能包括全部的内容,包括:微处理器的功能包括、硬连线控制器和微程序控制器各有哪些优缺点、微程序控制计算机中的控制存储器是用来存放什么的等相关内容解答,如果想了解更多相关内容,可以关注我们,你们的支持是我们更新的动力!
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)