据 Drew 所知最短路经算法现在重要的应用有计算机网络路由算法,机器人探路,交通路线导航,人工智能,游戏设计等等。美国火星探测器核心的寻路算法就是采用的D(D Star)算法。
最短路经计算分静态最短路计算和动态最短路计算。
静态路径最短路径算法是外界环境不变,计算最短路径。主要有Dijkstra算法,A(A Star)算法。
动态路径最短路是外界环境不断发生变化,即不能计算预测的情况下计算最短路。如在游戏中敌人或障碍物不断移动的情况下。典型的有D算法。
这是Drew程序实现的10000个节点的随机路网三条互不相交最短路
真实路网计算K条路径示例:节点5696到节点3006,三条最快速路,可以看出路径基本上走环线或主干路。黑线为第一条,兰线为第二条,红线为第三条。约束条件系数为12。共享部分路段。 显示计算部分完全由Drew自己开发的程序完成。
参见 K条路算法测试程序
Dijkstra算法求最短路径:
Dijkstra算法是典型最短路算法,用于计算一个节点到其他所有节点的最短路径。主要特点是以起始点为中心向外层层扩展,直到扩展到终点为止。Dijkstra算法能得出最短路径的最优解,但由于它遍历计算的节点很多,所以效率低。
Dijkstra算法是很有代表性的最短路算法,在很多专业课程中都作为基本内容有详细的介绍,如数据结构,图论,运筹学等等。
Dijkstra一般的表述通常有两种方式,一种用永久和临时标号方式,一种是用OPEN, CLOSE表方式,Drew为了和下面要介绍的 A 算法和 D 算法表述一致,这里均采用OPEN,CLOSE表的方式。
大概过程:
创建两个表,OPEN, CLOSE。
OPEN表保存所有已生成而未考察的节点,CLOSED表中记录已访问过的节点。
1. 访问路网中里起始点最近且没有被检查过的点,把这个点放入OPEN组中等待检查。
2. 从OPEN表中找出距起始点最近的点,找出这个点的所有子节点,把这个点放到CLOSE表中。
3. 遍历考察这个点的子节点。求出这些子节点距起始点的距离值,放子节点到OPEN表中。
4. 重复2,3,步。直到OPEN表为空,或找到目标点。
这是在drew 程序中4000个节点的随机路网上Dijkstra算法搜索最短路的演示,黑色圆圈表示经过遍历计算过的点由图中可以看到Dijkstra算法从起始点开始向周围层层计算扩展,在计算大量节点后,到达目标点。所以速度慢效率低。
提高Dijkstra搜索速度的方法很多,据Drew所知,常用的有数据结构采用Binary heap的方法,和用Dijkstra从起始点和终点同时搜索的方法。
推荐网页:>
matlab程序如下:
function[opt_rte,opt_brk,min_dist] =mtspf_ga(xy,dmat,salesmen,min_tour,pop_size,num_iter)
%%
%实例
% n = 20;%城市个数
% xy = 10rand(n,2);%城市坐标 随机产生,也可以自己设定
% salesmen = 5;%旅行商个数
% min_tour = 3;%每个旅行商最少访问的城市数
% pop_size = 80;%种群个数
% num_iter = 200;%迭代次数
% a = meshgrid(1:n);
% dmat =reshape(sqrt(sum((xy(a,:)-xy(a',:))^2,2)),n,n);
% [opt_rte,opt_brk,min_dist] = mtspf_ga(xy,dmat,salesmen,min_tour,
% pop_size,num_iter);%函数
%%
[N,dims]= size(xy); %城市矩阵大小
[nr,nc]= size(dmat); %城市距离矩阵大小
n = N -1;% 除去起始的城市后剩余的城市的数
% 初始化路线、断点的选择
num_brks= salesmen-1;
dof = n- min_toursalesmen; %初始化路线、断点的选择
addto =ones(1,dof+1);
for k =2:num_brks
addto = cumsum(addto);
end
cum_prob= cumsum(addto)/sum(addto);
%% 初始化种群
pop_rte= zeros(pop_size,n); % 种群路径
pop_brk= zeros(pop_size,num_brks); % 断点集合的种群
for k =1:pop_size
pop_rte(k,:) = randperm(n)+1;
pop_brk(k,:) = randbreaks();
end
% 画图路径曲线颜色
clr =[1 0 0; 0 0 1; 067 0 1; 0 1 0; 1 05 0];
ifsalesmen > 5
clr = hsv(salesmen);
end
%%
% 基于遗传算法的MTSP
global_min= Inf; %初始化最短路径
total_dist= zeros(1,pop_size);
dist_history= zeros(1,num_iter);
tmp_pop_rte= zeros(8,n);%当前的路径设置
tmp_pop_brk= zeros(8,num_brks); %当前的断点设置
new_pop_rte= zeros(pop_size,n);%更新的路径设置
new_pop_brk= zeros(pop_size,num_brks);%更新的断点设置
foriter = 1:num_iter
% 计算适应值
for p = 1:pop_size
d = 0;
p_rte = pop_rte(p,:);
p_brk = pop_brk(p,:);
rng = [[1 p_brk+1];[p_brk n]]';
for s = 1:salesmen
d = d + dmat(1,p_rte(rng(s,1)));% 添加开始的路径
for k = rng(s,1):rng(s,2)-1
d = d + dmat(p_rte(k),p_rte(k+1));
end
d = d + dmat(p_rte(rng(s,2)),1); % 添加结束的的路径
end
total_dist(p) = d;
end
% 找到种群中最优路径
[min_dist,index] = min(total_dist);
dist_history(iter) = min_dist;
if min_dist < global_min
global_min = min_dist;
opt_rte = pop_rte(index,:); %最优的最短路径
opt_brk = pop_brk(index,:);%最优的断点设置
rng = [[1 opt_brk+1];[opt_brk n]]';%设置记录断点的方法
figure(1);
for s = 1:salesmen
rte = [1 opt_rte(rng(s,1):rng(s,2))1];
plot(xy(rte,1),xy(rte,2),'-','Color',clr(s,:));
title(sprintf('城市数目为 = %d,旅行商数目为 = %d,总路程 = %14f, 迭代次数 =%d',n+1,salesmen,min_dist,iter));
hold on
grid on
end
plot(xy(1,1),xy(1,2),'ko');
hold off
end
% 遗传 *** 作
rand_grouping = randperm(pop_size);
for p = 8:8:pop_size
rtes = pop_rte(rand_grouping(p-7:p),:);
brks = pop_brk(rand_grouping(p-7:p),:);
dists =total_dist(rand_grouping(p-7:p));
[ignore,idx] = min(dists);
best_of_8_rte = rtes(idx,:);
best_of_8_brk = brks(idx,:);
rte_ins_pts = sort(ceil(nrand(1,2)));
I = rte_ins_pts(1);
J = rte_ins_pts(2);
for k = 1:8 %产生新种群
tmp_pop_rte(k,:) = best_of_8_rte;
tmp_pop_brk(k,:) = best_of_8_brk;
switch k
case 2% 倒置 *** 作
tmp_pop_rte(k,I:J) =fliplr(tmp_pop_rte(k,I:J));
case 3 % 互换 *** 作
tmp_pop_rte(k,[I J]) =tmp_pop_rte(k,[J I]);
case 4 % 滑动平移 *** 作
tmp_pop_rte(k,I:J) =tmp_pop_rte(k,[I+1:J I]);
case 5% 更新断点
tmp_pop_brk(k,:) = randbreaks();
case 6 % 倒置并更新断点
tmp_pop_rte(k,I:J) =fliplr(tmp_pop_rte(k,I:J));
tmp_pop_brk(k,:) =randbreaks();
case 7 % 互换并更新断点
tmp_pop_rte(k,[I J]) =tmp_pop_rte(k,[J I]);
tmp_pop_brk(k,:) =randbreaks();
case 8 % 评议并更新断点
tmp_pop_rte(k,I:J) =tmp_pop_rte(k,[I+1:J I]);
tmp_pop_brk(k,:) =randbreaks();
otherwise
end
end
new_pop_rte(p-7:p,:) = tmp_pop_rte;
new_pop_brk(p-7:p,:) = tmp_pop_brk;
end
pop_rte = new_pop_rte;
pop_brk = new_pop_brk;
end
figure(2)
plot(dist_history,'b','LineWidth',2);
title('历史最优解');
xlabel('迭代次数')
ylabel('最优路程')
% 随机产生一套断点 的集合
function breaks = randbreaks()
if min_tour == 1 % 一个旅行商时,没有断点的设置
tmp_brks = randperm(n-1);
breaks =sort(tmp_brks(1:num_brks));
else % 强制断点至少找到最短的履行长度
num_adjust = find(rand <cum_prob,1)-1;
spaces =ceil(num_brksrand(1,num_adjust));
adjust = zeros(1,num_brks);
for kk = 1:num_brks
adjust(kk) = sum(spaces == kk);
end
breaks = min_tour(1:num_brks) +cumsum(adjust);
end
end
disp('最优路径为:/n')
disp(opt_rte);
disp('其中断点为为:/n')
disp(opt_brk);
end
1、step的调用方式有问题,完全没有体现出这是一个离散系统。考虑:
step(ss(Ac,Bc,Cc,Dc,1))2、k1=k(1);Ac=A-Bk;Bc=Bk1;Cc=C;Dc=D;Bc和Cc的计算有问题,应该是Bc=B, Cc=C-Dk。
3、LQR最优调节器与Q、R的选择关系很大,所谓的最优只是对于特定的Q、R而言的。
4、可以试一试用下面的代码观察各状态量:
step(ss(Ac,Bc,eye(length(A)),0,1))x0=[5,5,2]
题主给出的线性规划模型可以用fmincon函数来
求其最优解,其方法:
1、首先建立目标函数,objectivef(x),其内容
y=x(1)x(2)+2(x(2)x(3)+x(1)x(3));
2、然后建立约束函数,constrainf(x),其内容
%约束函数
c=[];
%非约束函数
ceq=x(1)x(2)x(3)-100;
3、最后建立运行代码
x0=[5,5,2]
A=[];b=[];Aeq=[];beq=[];VLB=[5,0,0];VUB=[inf,inf,inf];
[x,fval,exitflag]=fmincon(@(x)objectivef(x),x0,A,b,Aeq,beq,VLB,VUB,@(x)constrainf(x))
A=x(1)x(2)x(3);
str=['x1x2x3=100 ',num2str(A)];
fprintf('%s\n',str);
4、根据上述 内容编程,执行可以得到
x1=5848;x2= 5848;x3=2924
min S=1026
以上就是关于从原点出发,遍历50个点,再回到原点的最短路径,求matlab程序全部的内容,包括:从原点出发,遍历50个点,再回到原点的最短路径,求matlab程序、MATLAB线性神经网络的程序,跪求。。、MATLAB离散最优控制程序应该怎么编等相关内容解答,如果想了解更多相关内容,可以关注我们,你们的支持是我们更新的动力!
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)