数学黑洞“西西费斯串”
传说在古希腊神话中,科林斯国王西西费斯被罚将一块巨石一直推到一座山上,但是不管他如何努力,这块巨石总是在到达山顶之前就滚下来,于是他只好再推,并且永无休止。世界著名的西西费斯串就是依据这个故事一举得名的。
什么叫西西费斯串呢它是随便一个数,如35962,数出这个数中的偶数个数以及奇数个数、及全部数字的个数,就能得到2(2个偶数)、3(3个奇数)、5(总共五个数),用这三个数组成下一个数字串235。用235重复以上程序,就可以得到1,2,3,把数串123再重复进行,仍得123。对这个程序和数的“宇宙”,123就是一个数学黑洞。
是不是每一个数最后都可以得到123呢用一个大数试试看。如:88883337777444992222,在这个数中偶数、奇数及所有数字分别为11、9、20,把这三个数合起来可得到11920,对11920这个数串重复这个程序可得到235,然后再重复这个程序得到123,于是便进入“黑洞”了。
这就是著名数学黑洞“西西费斯串”。同学们努力学习,去发现这其中的奥秘吧!
对于数学黑洞,无论怎样设值,在规定的处理法则下,最终都将得到固定的一个值,再也跳不出去了,就像宇宙中的黑洞可以将任何物质,以及运行速度最快的光牢牢吸住,不使它们逃脱一样。这就对密码的设值破解开辟了一个新的思路。
123数学黑洞
123数学黑洞,即西西弗斯串。
西西弗斯串可以用几个函数表达它,我们称它为西西弗斯级数,表达式如下:
F 是一级原函数,k级通项式为它的迭代循环
它的vba程序代码详细底部目录
数学黑洞
设定一个任意数字串,数出这个数中的偶数个数,奇数个数,及这个数中所包含的所有位数的总数,
例如:1234567890,
偶:数出该数数字中的偶数个数,在本例中为2,4,6,8,0,总共有 5 个。
奇:数出该数数字中的奇数个数,在本例中为1,3,5,7,9,总共有 5 个。
总:数出该数数字的总个数,本例中为 10 个。
新数:将答案按 “偶-奇-总” 的位序,排出得到新数为:5510。
重复:将新数5510按以上算法重复运算,可得到新数:134。
重复:将新数134按以上算法重复运算,可得到新数:123。
结论:对数1234567890,按上述算法,最后必得出123的结果,我们可以用计算机写出程序,测试出对任意一个数经有限次重复后都会是123。换言之,任何数的最终结果都无法逃逸123黑洞。
黑洞数又称陷阱数,是类具有奇特转换特性的整数。 任何一个数字不全相同整数,经有限“重排求差” *** 作,总会得某一个或一些数,这些数即为黑洞数。"重排求差" *** 作即组成该数得排后的最大数去重排的最小数。 举个例子,三位数的黑洞数为495 简易推导过程:随便找个数,如297,三个位上的数从小到大和从大到小各排一次,为972和279,相减,得693 按上面做法再做一次,得到594,再做一次,得到495 之后反复都得到495 再如,四位数的黑洞数有6174 但是,五位数及五位以上的数还没有找到对应的黑洞数 神秘的6174-黑洞数 随便造一个四位数,如a1=1628,先把组成部分1628的四个数字由大到小排列得到a2=8621,再把1628的四个数字由小到大排列得a3=1268,用大的减去小的a2-a1=8621-1268=7353,把7353按上面的方法再作一遍,由大到小排列得7533,由小到大排列得3357,相减7533-3367=4176 把4176再重复一遍:7641-1467=6174。 如果再往下作,奇迹就出现了!7641-1467=6174,又回到6174。 这是偶然的吗?我们再随便举一个数1331,按上面的方法连续去做: 3311-1133=2178 8721-1278=7443 7443-3447=3996 9963-3699=6264 6624-2466=4174 7641-1467=6174 好啦!6174的“幽灵”又出现了,大家不妨试一试,对于任何一个数字不完全的四位数,最多运算7步,必然落入陷阱中。 这个黑洞数已经由印度数学家证明了。 在数学中由有很多有趣,有意义的规律等待我们去探索和研究,让我们在数学中得到更多的乐趣。 苏联的科普作家高基莫夫在他的著作《数学的敏感》一书中,提到了一个奇妙的四位数6174,并把它列作“没有揭开的秘密”。不过,近年来,由于数学爱好者的努力,已经开始拨开迷雾。 6174有什么奇妙之处? 请随便写出一个四位数,这个数的四个数字有相同的也不要紧,但这四个数不准完全相同或有完全相同趋向,例如 3333、7777、7337等都应该排除。 写出四位数后,把数中的各位数字按大到小的顺序和小到大的顺序重新排列,将得到由这四个数字组成的四位数中的最大者和最小者,两者相减,就得到另一个四位数。将组成这个四位数的四个数字施行同样的变换,又得到一个最大的数和最小的数,两者相减……这样循环下去,一定在经过若干次(最多7次)变换之后,得到6174。 例如,开始时我们取数8208,重新排列后最大数为8820,最小数为0288,8820—0288=8532;对8532重复以上过程:8532-2358=6174。这里,经过两步变换就掉入6174这个“陷阶”。 需要略加说明的是:以0开头的数,例如0288也得看成一个四位数。再如,我们开始取数2187,按要求进行变换: 2187 → 8721-1278=7443→7443-3447=3996→9963-3699=6264→6642-2466=4176→7641-1467=6174。 这里,经过五步变换就掉入了“陷阱”——6174。 拿6174 本身来试,只需一步:7641-1467=6174,就掉入“陷阱”再也出不来了。 所有的四位数都会掉入6174设的陷阱,不信可以取一些数进行验证。验证之后,你不得不感叹6174的奇妙。 任何一个数字不全相同整数,经有限次“重排求差” *** 作,总会得某一个或一些数,这些数即为黑洞数。"重排求差" *** 作即组成该数得排后的最大数去重排的最小数。
123黑洞 (即西西弗斯串) :
设定一个任意数字串,数出这个数中的偶数个数,奇数个数,及这个数中所包含的所有位数的总数,
例如:1234567890,
偶:数出该数数字中的偶数个数,在本例中为2,4,6,8,0,总共有 5 个
奇:数出该数数字中的奇数个数,在本例中为1,3,5,7,9,总共有 5 个
总:数出该数数字的总个数,本例中为 10 个
新数:将答案按 “偶-奇-总” 的位序,排出得到新数为:5510
重复:将新数5510按以上算法重复运算,可得到新数:134
重复:将新数134按以上算法重复运算,可得到新数:123
结论:对数1234567890,按上述算法,最后必得出123的结果,换言之,任何数的最终结果都无法逃逸123黑洞
“123数学黑洞(西西弗斯串)”现象已由中国回族学者秋屏先生于2010年5月18日作出严格的数学证明,并推广到六个类似的数学黑洞(“123”、“213”、“312”、“321”、“132”和“231”)
6174黑洞(即卡普雷卡卡尔常数):
取任意一个4位数(4个数字均为同一个数的除外),将该数的4个数字重新组合,形成可能的最大数和可能的最小数,再将两者之间的差求出来;对此差值重复同样过程,最后你总是至达卡普雷卡尔黑洞6174,至达这个黑洞最多需要7个步骤
例如:
大数:取这4个数字能构成的最大数,本例为:4321;
小数:取这4个数字能构成的最小数,本例为:1234;
差:求出大数与小数之差,本例为:4321-1234=3087;
重复:对新数3087按以上算法求得新数为:8730-0378=8352;
重复:对新数8352按以上算法求得新数为:8532-2358=6174;
结论:对任何只要不是4位数字全相同的4位数,按上述算法,不超过7次计算,最终结果都无法逃出6174黑洞
自恋性数字:
除了0和1自然数中各位数字的立方之和与其本身相等的只有153、370、371和407(此四个数称为“水仙花数”)例如为使153成为黑洞,我们开始时取任意一个可被3整除的正整数分别将其各位数字的立方求出,将这些立方相加组成一个新数然后重复这个程序
除了“水仙花数”外,同理还有四位的“玫瑰花数”(有:1634、8208、9474)、五位的“五角星数”(有54748、92727、93084),当数字个数大于五位时,这类数字就叫做“自幂数”
以上就是关于什么叫“数学黑洞”请举例说明。全部的内容,包括:什么叫“数学黑洞”请举例说明。、数学黑洞是什么、6174陷阱是什么求大神帮助等相关内容解答,如果想了解更多相关内容,可以关注我们,你们的支持是我们更新的动力!
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)