二级减速器分流式输出轴怎么校核啊

二级减速器分流式输出轴怎么校核啊,第1张

将电机(马达)的回转数减速到所要的回转数,并得到较大转矩的机构。在目前用于传递动力与运动的机构中,减速机的应用范围相当广泛。几乎在各式机械的传动系统中都可以见到它的踪迹,从交通工具的船舶、汽车、机车,建筑用的重型机具,机械工业所用的加工机具及自动化生产设备,到日常生活中常见的家电,钟表等等其应用从大动力的传输工作,到小负荷,精确的角度传输都可以见到减速机的应用,且在工业应用上,减速机具有减速及增加转矩功能。因此广泛应用在速度与扭矩的转换设备。减速机的作用主要有:

1)降速同时提高输出扭矩,扭矩输出比例按电机输出乘减速比,但要注意不能超出减速机额定扭矩。

2)减速同时降低了负载的惯量,惯量的减少为减速比的平方。大家可以看一下一般电机都有一个惯量数值。

减速机的工作原理

减速机一般用于低转速大扭矩的传动设备,把电动机内燃机或其它高速运转的动力通过减速机的输入轴上的齿数少的齿轮啮合输出轴上的大齿轮来达到减速的目的,普通的减速机也会有几对相同原理齿轮达到理想的减速效果,大小齿轮的齿数之比,就是传动比。

[编辑本段]减速机的种类

减速机是一种相对精密的机械,使用它的目的是降低转速,增加转矩。它的种类繁多,型号各异,不同种类有不同的用途。减速器的种类繁多,按照传动类型可分为齿轮减速器、蜗杆减速器和行星齿轮减速器;按照传动级数不同可分为单级和多级减速器;按照齿轮形状可分为圆柱齿轮减速器、圆锥齿轮减速器和圆锥-圆柱齿轮减速器;按照传动的布置形式又可分为展开式、分流式和同轴式减速器。以下是常用的减速机分类:

⑴摆线针轮减速机

⑵硬齿面圆柱齿轮减速器

⑶行星齿轮减速机

⑷软齿面减速机

⑸三环减速机

⑹起重机减速机

⑺蜗杆减速机

⑻轴装式硬齿面减速机

⑼无级变速器

蜗轮蜗杆减速机的主要特点是具有反向自锁功能,可以有较大的减速比,输入轴和输出轴不在同一轴线上,也不在同一平面上。但是一般体积较大,传动效率不高,精度不高。谐波减速机的谐波传动是利用柔性元件可控的d性变形来传递运动和动力的,体积不大、精度很高,但缺点是柔轮寿命有限、不耐冲击,刚性与金属件相比较差。输入转速不能太高。行星减速机其优点是结构比较紧凑,回程间隙小、精度较高,使用寿命很长,额定输出扭矩可以做的很大。但价格略贵。

摆线减速机特点

行星摆线减速机是一种应用行星传动原理,采用摆线针轮啮合,设计先进、结构新颖。这种减速机在绝大多数情况下已替代两级、三级普通圆柱齿轮减速机及圆柱蜗杆减速机,在军工、航天、冶金、矿、石油、化工、船舶、轻工、食品、纺织、印染、制药、橡胶、塑料、及起重运输等方面得到日益广泛的应用。

一、产品特点

1传动比大。一级减速时传动比为1/6--1/87。两级减速时传动比为1/99--1/7569;三级传动时传动比为1/5841--1/658503。另外根据需要还可以采用多级组合,速比达到指定大。

2传动效率高。由于啮合部位采用了滚动啮合,一般一级传动效率为90%--95%。

3结构紧凑,体积小,重量轻。体积和普通圆柱齿轮减速机相比可减小2/1--2/3。

4故障少,寿命长。主要传动啮合件使用轴承钢磨削制造,因此机械性能与耐磨性能均佳,又因其为滚动摩擦,因而故障少,寿命长。

5运转平稳可靠。因传动过程中为多齿啮合,所以使之运转平稳可靠,噪声低。

6拆装方便,容易维修。

7过载能力强,耐冲击,惯性力矩小,适用于起动频繁和正反转运转的特点。

二、技术规格

1、机型号:

按传动比分为:一级、二级、三级。

一级有十三种机型:0,1,2,3,4,5,6,7,8,9,10,11,12。

两级有14种机型:00,20;32,42,53,63,64,74,84,85,95,106,117,128。

三级有8种机型:420,742,842,853,953,1063,1174,1285。

按结构型式分为:卧式、立式、双轴型、直联型四种。

2、传动比:

一级减速的传动比有:9,11,17,21,23,25,29,35,43,47,59,71,87。

两级减速的传动比有:99,121,187,289,319,385,473,493,595,649,731,841,1003,1225, 1505,1849,2065,2537,3045,3481,5133。

三级减速的传动比有:5841-658530

[编辑本段]减速机的发展

20世纪70-80年代,世界上减速器技术有了很大的发展,且与新技术革命的发展紧密结合。通用减速器的发展趋势如下:

①高水平、高性能。圆柱齿轮普遍采用渗碳淬火、磨齿,承载能力提高4倍以上,体积小、重量轻、噪声低、效率高、可靠性高。

②积木式组合设计。基本参数采用优先数,尺寸规格整齐,零件通用性和互换性强,系列容易扩充和花样翻新,利于组织批量生产和降低成本。

③型式多样化,变型设计多。摆脱了传统的单一的底座安装方式,增添了空心轴悬挂式、浮动支承底座、电动机与减速器一体式联接,多方位安装面等不同型式,扩大使用范围。

促使减速器水平提高的主要因素有:

①理论知识的日趋完善,更接近实际(如齿轮强度计算方法、修形技术、变形计算、优化设计方法、齿根圆滑过渡、新结构等)。

②采用好的材料,普遍采用各种优质合金钢锻件,材料和热处理质量控制水平提高。

③结构设计更合理。

④加工精度提高到ISO5-6级。

⑤轴承质量和寿命提高。

⑥润滑油质量提高。

自20世纪60年代以来,我国先后制订了JB1130-70《圆柱齿轮减速器》等一批通用减速器的标淮,除主机厂自制配套使用外,还形成了一批减速器专业生产厂。目前,全国生产减速器的企业有数百家,年产通用减速器25万台左右,对发展我国的机械产品作出了贡献。

20世纪60年代的减速器大多是参照苏联20世纪40-50年代的技术制造的,后来虽有所发展,但限于当时的设计、工艺水平及装备条件,其总体水平与国际水平有较大差距。

改革开放以来,我国引进一批先进加工装备,通过引进、消化、吸收国外先进技术和科研攻关,逐步掌握了各种高速和低速重载齿轮装置的设计制造技术。材料和热处理质量及齿轮加工精度均有较大提高,通用圆柱齿轮的制造精度可从JB179-60的8-9级提高到GB10095-88的6级,高速齿轮的制造精度可稳定在4-5级。部分减速器采用硬齿面后,体积和质量明显减小,承载能力、使用寿命、传动效率有了较大的提高,对节能和提高主机的总体水平起到很大的作用。

我国自行设计制造的高速齿轮减(增)速器的功率已达42000kW ,齿轮圆周速度达150m/s以上。但是,我国大多数减速器的技术水平还不高,老产品不可能立即被取代,新老产品并存过渡会经历一段较长的时间。

[编辑本段]减速器的设计程序

一、设计的原始资料和数据

1、原动机的类型、规格、转速、功率(或转矩)、启动特性、短时过载能力、转动惯量等。

2、工作机械的类型、规格、用途、转速、功率(或转矩)。工作制度:恒定载荷或变载荷,变载荷的载荷图;启、制动与短时过载转矩,启动频率;冲击和振动程度;旋转方向等。

3、原动机 作机与减速器的联接方式,轴伸是否有径向力及轴向力。

4、安装型式(减速器与原动机、工作机的相对位置、立式、卧式)。

5、传动比及其允许误差。

6、对尺寸及重量的要求。

7、对使用寿命、安全程度和可靠性的要求。

8、环境温度、灰尘浓度、气流速度和酸碱度等环境条件;润滑与冷却条件(是否有循环水、润滑站)以及对振动、噪声的限制。

9、对 *** 作、控制的要求。

10、材料、毛坯、标准件来源和库存情况。

11、制造厂的制造能力。

12、对批量、成本和价格的要求。

13、交货期限。

上述前四条是必备条件,其他方面可按常规设计,例如设计寿命一般为!"年。用于重要场合时,可靠性应较高等。

二、选定减速器的类型和安装型式

三、初定各项工艺方法及参数

选定性能水平,初定齿轮及主要机件的材料、热处理工艺、精加工方法、润滑方式及润滑油品。

四、确定传动级数

按总传动比,确定传动的级数和各级的传动比。

五、初定几何参数

初算齿轮传动中心距(或节圆直径)、模数及其他几何参数。

六、整体方案设计

确定减速器的结构、轴的尺寸、跨距及轴承型号等。

七、校校

校核齿轮、轴、键等负载件的强度,计算轴承寿命。

八、润滑冷却计算

九、确定减速器的附件

十、确定齿轮渗碳深度

必要时还要进行齿形及齿向修形量等工艺数据的计算。

十一、绘制施工图

在设计中应贯彻国家和行业的有关标准。

[编辑本段]减速机的检查和维护

不同的润滑油禁止相互混合使用。油位螺塞、放油螺塞和通气器的位置由安装位置决定。它们的相关位置可参考减速机的安装位置图来确定。

油位的检查

• 切断电源,防止触电!等待减速机冷却!

• 移去油位螺塞检查油是否充满。

• 安装油位螺塞。

油的检查

• 切断电源,防止触电!等待减速机冷却!

• 打开放油螺塞,取油样。

• 检查油的粘度指数

——如果油明显浑浊,建议尽快更换。

• 对于带油位螺塞的减速机

——检查油位,是否合格

——安装油位螺塞

油的更换

冷却后油的粘度增大放油困难,减速机应在运行温度下换油。

• 切断电源,防止触电!等待减速机冷却下来无燃烧危险为止!

注意:换油时减速机仍应保持温热。

• 在放油螺塞下面放一个接油盘。

• 打开油位螺塞、通气器和放油螺塞。

• 将油全部排除。

• 装上放油螺塞。

• 注入同牌号的新油。

• 油量应与安装位置一致。

• 在油位螺塞处检查油位。

• 拧紧油位螺塞及通气器。

[编辑本段]减速机型号选择及注意事项

尽量选用接近理想减速比:

减速比=伺服马达转速/减速机出力轴转速

扭力计算:

对减速机的寿命而言,扭力计算非常重要,并且要注意加速度的最大转矩值(TP),是否超过减速机之最大负载扭力

适用功率通常为市面上的伺服机种的适用功率,减速机的适用性很高,工作系数都能维持在12以上,但在选用上也可以以自己的需要来决定:

要点有二:

A选用伺服电机的出力轴径不能大于表格上最大使用轴径

B若经扭力计算工作,转速可以满足平常运转,但在伺服全额输出时,有不足现象时,我们可以在电机侧之驱动器,做限流控制,或在机械轴上做扭力保护,这是很必要的。

理论上说,当然可以设计成空心齿轮轴结构。但前提是空心轴的壁厚一定要足够厚,以保证满足齿轮传动时较大的径向弯矩和刚度。需要校核“弯扭组合”强度。并取较大的安全系数,因为你说是车床主轴,那就应该对持久精度要求很高。

我是学力学的,强度校核的软件是Ansys(80,81,90,100),轴的强度校核应该很简单,用不到那么高级的软件(Ansys有1G多那么大),我的邮箱是07078214@163com,

以上就是关于二级减速器分流式输出轴怎么校核啊全部的内容,包括:二级减速器分流式输出轴怎么校核啊、齿轮悬臂布置的轴的校核的轴的校核步骤!是不是要考虑齿轮轴段的挠度、有没有计算轴强度校核的专门软件等相关内容解答,如果想了解更多相关内容,可以关注我们,你们的支持是我们更新的动力!

欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/zz/10127355.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-05-05
下一篇 2023-05-05

发表评论

登录后才能评论

评论列表(0条)

保存