你问的是进程调度吧
Linux进程调度采用的是抢占式多任务处理,所以进程之间的挂起和继续运行无需彼此之间的协作。
调度方式:时间片,优先级,还有就是时间片加优先级混合,默认是第三种
任何领域,革命性的碾压式推陈出新并不是没有,但是概率极低,人们普遍的狂妄在于,总是认为自己所置身的环境正在发生着某种碾压式的变革,但其实,最终大概率不过是一场平庸。
作者 | dog250
责编 | 刘静
出品 | CSDN博客
但凡懂Linux内核的,都知道Linux内核的CFS进程调度算法,无论是从2623将其初引入时的论文,还是各类源码分析,文章,以及Linux内核专门的图书,都给人这样一种感觉,即 CFS调度器是革命性的,它将彻底改变进程调度算法。 预期中,人们期待它会带来令人惊艳的效果。
然而这是错觉。
人们希望CFS速胜,但是分析来分析去, 却只是在某些方面比O(1)调度器稍微好一点点 。甚至在某些方面比不上古老的44BSD调度器。可是人们却依然对其趋之若鹜,特别是源码分析,汗牛塞屋!
为什么CFS对别的调度算法没有带来碾压的效果呢?
首先,在真实世界,碾压是不存在的,人与人,事与事既然被放在了同一个重量级梯队比较,其之间的差别没有想象的那么大,根本就不在谁碾压谁。不能被小说电视剧**蒙蔽了,此外,徐晓冬大摆拳暴打雷雷也不算数,因为他们本就不是一个梯队。
任何领域,革命性的碾压式推陈出新并不是没有,但是概率极低,人们普遍的狂妄在于,总是认为自己所置身的环境正在发生着某种碾压式的变革,但其实,最终大概率不过是一场平庸。
最终就出现了角力,僵持。
其次,我们应该看到,CFS调度器声称它会给交互式进程带来福音,在这方面CFS确实比O(1)做得好,但是惊艳的效果来自于粉丝的认同。Linux系统交互进程本来就不多,Linux更多地被装在服务器,而在服务器看来,吞吐是要比交互响应更加重要的。
那么以交互为主的Android系统呢?我们知道,Android也是采用了CFS调度器,也有一些事BFS,为什么同样没有带来惊艳的效果呢?
我承认,2008年前后出现CFS时还没有Android,等到Android出现时,其采用的Linux内核已经默认了CFS调度器,我们看下Android版本,Linux内核版本以及发行时间的关系:
Linux内核在2623就采用了CFS调度器。所以一个原因就是没有比较。Android系统上,CFS没有机会和O(1)做比较。
另外,即便回移一个O(1)调度器到Android系统去和CFS做AB,在我看来,CFS同样不会惊艳,原因很简单,Android系统几乎都是交互进程,却前台进程永远只有一个,你几乎感受不到进程的切换卡顿,换句话说,即便CFS对待交互式进程比O(1)好太多,你也感受不到,因为对于手机,平板而言,你切换 APP 的时间远远大于进程切换的时间粒度。
那么,CFS到底好在哪里?
简单点说,CFS的意义在于, 在一个混杂着大量计算型进程和IO交互进程的系统中,CFS调度器对待IO交互进程要比O(1)调度器更加友善和公平 。理解这一点至关重要。
其实,CFS调度器的理念非常古老,就说在业界,CFS的思想早就被应用在了磁盘IO调度,数据包调度等领域,甚至最最古老的SRV3以及43BSD UNIX系统的进程调度中早就有了CFS的身影,可以说,Linux只是 使用CFS调度器 ,而不是 设计了CFS调度器 !
就以43BSD调度器为例,我们看一下其调度原理。
43BSD采用了1秒抢占制,每间隔1秒,会对整个系统进程进行优先级排序,然后找到优先级最高的投入运行,非常简单的一个思想,现在看看它是如何计算优先级的。
首先,每一个进程j均拥有一个CPU滴答的度量值Cj,每一个时钟滴答,当前在运行的进程的CPU度量值C会递增:
当一个1秒的时间区间ii过去之后,Cj被重置,该进程jj的优先级采用下面的公式计算:
可以计算,在一个足够长的时间段内,两个进程运行的总时间比例,将和它们的Base_PrioBase_Prio优先级的比例相等。
43BSD的优先级公平调度是CPU滴答驱动的。
现在看Linux的CFS,CFS采用随时抢占制。每一个进程j均携带一个 虚拟时钟VCj ,每一个时钟滴答,当前进程k的VCk会重新计算,同时调度器选择VC最小的进程运行,计算方法非常简单:
可见, Linux的CFS简直就是43BSD进程调度的自驱无级变速版本!
如果你想了解CFS的精髓,上面的就是了。换成语言描述,CFS的精髓就是 “ n个进程的系统,任意长的时间周期TT,每一个进程运行T/n的时间! ”
当然,在现实和实现中,会有80%的代码处理20%的剩余问题,比如如何奖励睡眠太久的进程等等,但是这些都不是精髓。
综上,我们总结了:
所以无论从概念还是从效果,Linux CFS调度器均没有带来令人眼前一亮的哇塞效果。但是还缺点什么。嗯,技术上的解释。
分析和解释任何一个机制之前,必然要先问,这个机制的目标是什么,它要解决什么问题,这样才有意义。而不能仅仅是明白了它是怎么工作的。
那么Linux CFS调度器被采用,它的目标是解决什么问题的呢?它肯定是针对O(1)算法的一个问题而被引入并取代O(1),该问题也许并非什么臭名昭著,但是确实是一枚钉子,必须拔除。
O(1)调度器的本质问题在于 进程的优先级和进程可运行的时间片进行了强映射!
也就是说,给定一个进程优先级,就会计算出一个时间片与之对应,我们忽略奖惩相关的动态优先级,看一下原始O(1)算法中一个进程时间片的计算:
直观点显示:
针对上述问题,26内核的O(1)O(1)引入了双斜率来解决:
直观图示如下:
貌似问题解决了,但是如果单单揪住上图的某一个优先级子区间来看,还是会有问题,这就是相对优先级的问题。我们看到,高优先级的时间片是缓慢增减的,而低优先级的时间片却是陡然增减,同样都是相差同样优先级的进程,其优先级分布影响了它们的时间片分配。
本来是治瘸子,结果腿好了,但是胳臂坏了。
本质上来讲,这都源自于下面两个原因:
固定的优先级映射到固定的时间片。
相对优先级和绝对优先级混杂。
那么这个问题如何解决?
优先级和时间片本来就是两个概念,二者中间还得有个变量沟通才可以。优先级高只是说明该进程能运行的久一些,但是到底久多少,并不是仅仅优先级就能决定的,还要综合考虑,换句话距离来说,如果只有一个进程,那么即便它优先级再低,它也可以永久运行,如果系统中有很多的进程,即便再高优先级的进程也要让出一些时间给其它进程。
所以,考虑到系统中总体的进程情况,将优先级转换为权重,将时间片转换为份额,CFS就是了。最终的坐标系应该是 权重占比/时间片 坐标系而不是 权重(或者优先级)/时间片 。应该是这个平滑的样子:
看来,Linux CFS只是为了解决O(1)O(1)中一个 “静态优先级/时间片映射” 问题的,那么可想而知,它又能带来什么惊艳效果呢?这里还有个“但是”,这个O(1)O(1)调度器的问题其实在计算密集型的守护进程看来,并不是问题,反而是好事,毕竟高优先级进程可以 无条件持续运行很久而不切换 。这对于吞吐率的提高,cache利用都是有好处的。无非也就侵扰了交互进程呗,又有何妨。
当然,使用调优CFS的时候,难免也要遇到IO睡眠奖惩等剩余的事情去设计一些trick算法,这破费精力。
对了,还要设置你的内核为HZ1000哦,这样更能体现CFS的平滑性,就像它宣称的那样。我难以想象,出了Ubuntu,Suse等花哨的桌面发行版之外,还有哪个Linux需要打开HZ1000,服务器用HZ250不挺好吗?
关于调度的话题基本就说完了,但是在进入下一步固有的喷子环节之前,还有两点要强调:
在CPU核数越来越多的时代,人们更应该关心 把进程调度到哪里CPU核上 而不是 某个CPU核要运行哪个进程 。
单核时代一路走过来的Linux,发展迅猛,这无可厚非,但是成就一个 *** 作系统内核的并不单单是技术,还有别的。这些当然程序员们很不爱听,程序员最烦非技术方面的东西了,程序员跟谁都比写代码,程序员特别喜欢喷领导不会写代码云云。
Linux在纯技术方面并不优秀,Linux总体上优秀的原因是因为有一群非代码不明志的程序员在让它变得越来越优秀,另一方面还要归功于开源和社区。Linux的学习门槛极低,如果一个公司能不费吹灰之力招聘到一个Linux程序员的话,那它干嘛还要费劲九牛二虎之力去招聘什么高端的BSD程序员呢?最终的结果就是,Linux用的人极多,想换也换不掉了。
但无论如何也没法弥补Linux内核上的一些原则性错误。
Linux内核还是以原始的主线为base,以讲Linux内核的书为例,经典的Robert Love的《Linux内核设计与实现》,以及《深入理解Linux内核》,在讲进程调度的时候,关于多核负载均衡的笔墨都是少之又少甚至没有,如此经典的著作把很多同好引向了那万劫不复的代码深渊。于是乎,铺天盖地的CFS源码分析纷至沓来。
但其实,抛开这么一个再普通不过的Linux内核,现代 *** 作系统进入了多核时代,其核心正是在cache利用上的革新,带来的转变就是进程调度和内存管理的革新。review一下Linux内核源码,这些改变早就已经表现了出来。
可悲的是,关于Linux内核的经典书籍却再也没有更新,所有的从传统学校出来的喜欢看书学习的,依然是抱着10年前的大部头在啃。
>
对于磁盘I/O,Linux提供了cfq, deadline和noop三种调度策略
考虑到硬件配置、实际应用场景(读写比例、顺序还是随机读写)的差异,上面的简单解释对于实际选择没有太大帮助,实际该选择哪个基本还是要实测来验证。不过下面几条说明供参考:
NOOP全称No Operation,中文名称电梯式调度器,该算法实现了最简单的FIFO队列,所有I/O请求大致按照先来后到的顺序进行 *** 作。NOOP实现了一个简单的FIFO队列,它像电梯的工作方式一样对I/O请求进行组织。它是基于先入先出(FIFO)队列概念的 Linux 内核里最简单的I/O 调度器。此调度程序最适合于固态硬盘。
Deadline翻译成中文是截止时间调度器,是对Linus Elevator的一种改进,它避免有些请求太长时间不能被处理。另外可以区分对待读 *** 作和写 *** 作。DEADLINE额外分别为读I/O和写I/O提供了FIFO队列。
Deadline对读写request进行了分类管理,并且在调度处理的过程中读请求具有较高优先级。这主要是因为读请求往往是同步 *** 作,对延迟时间比较敏感,而写 *** 作往往是异步 *** 作,可以尽可能的将相邻访问地址的请求进行合并,但是,合并的效率越高,延迟时间会越长。因此,为了区别对待读写请求类型,deadline采用两条链表对读写请求进行分类管理。但是,引入分类管理之后,在读优先的情况下,写请求如果长时间得到不到调度,会出现饿死的情况,因此,deadline算法考虑了写饿死的情况,从而保证在读优先调度的情况下,写请求不会被饿死。
总体来讲,deadline算法对request进行了优先权控制调度,主要表现在如下几个方面:
CFQ全称Completely Fair Scheduler ,中文名称完全公平调度器,它是现在许多 Linux 发行版的默认调度器,CFQ是内核默认选择的I/O调度器。它将由进程提交的同步请求放到多个进程队列中,然后为每个队列分配时间片以访问磁盘。 对于通用的服务器是最好的选择,CFQ均匀地分布对I/O带宽的访问 。CFQ为每个进程和线程,单独创建一个队列来管理该进程所产生的请求,以此来保证每个进程都能被很好的分配到I/O带宽,I/O调度器每次执行一个进程的4次请求。该算法的特点是按照I/O请求的地址进行排序,而不是按照先来后到的顺序来进行响应。简单来说就是给所有同步进程分配时间片,然后才排队访问磁盘。
多队列无 *** 作I / O调度程序。不对请求进行重新排序,最小的开销。NVME等快速随机I / O设备的理想选择。
这是对最后期限I / O调度程序的改编,但设计用于 多队列设备。一个出色的多面手,CPU开销相当低。
Linux技术的发展引起了很多企业和个人的关注。市场对Linux运维的需求逐渐增加,学习Linux技术的人越来越多。在Linux运维中,进程是必须学习掌握的技能。那么Linux中如何启动进程?常用的进程调度命令有哪些?
执行中的程序称作进程。当程序的可执行文件存储在存储器中并运行时,每个进程将被动态分配系统资源、内存、安全属性和相关状态。多个进程可以与同一个程序相关联,并在同一时间执行,而不会相互干扰。 *** 作系统将有效地管理和跟踪所有正在运行的进程。
Linux中如何启动进程?启动进程的方法是什么?
手工启动。用户在输入端发出命令,直接启动进程。分为前台启动和后台启动。前台启动:直接在SHELL中输入命令进行启动。后台启动:启动一个目前并不紧急的进程。
调度启动。系统管理员根据系统资源和进程占用资源的情况,事先进行调度安排,指定任务运行的时间和场合,到时候系统会自动完成该任务。
常用的进程调度命令有哪些?
常用的进程调度命令有:at、batch、crontab。
以上便是关于“如何启动或终止进程?常用的进程调度命令有哪些?”的相关介绍。想要成为一名优秀的Linux运维工程师,需要掌握更多的Linux知识。
*** 作系统进程管理之进程调度(七)
他暗念她四年,毕业时,终于鼓起勇气,问他能不能送她去车站。她答应了,带着惯常的懒散与随意。“没落什么东西吧。”他问。“落下了什么,就归你好了。”她心不在焉地说。一路上,他恍恍惚惚,几次欲言又止。车要开了,他突然狠狠搂住她,把手里的包甩到了车上,“喂,包,你把主人落下了!”
在躲到程序环境下,一个作业从提交到完成通常都要经历多级调度,比如高级调度、低级调、中级调度等,处理机调度算法的优劣直接影响到整个系统的性能。
调度的层次
作业调度:
i 作业调度的定义:又称宏观调度、高级调度或长程调度,主要任务是按一定的原则从外存上处于后备状态的作业中选择一个或多个,给它们分配内存、输入输出设备等必要的资源,并建立相应的进程,以使该作业具有获得竞争处理机的权利<运行频率低,通常几分钟一次>;
进程调度:
i 进程调度的定义:又称微观调度、低级调度或短程调度,主要任务是按某种策略和方法从就绪队列中选取一个进程,将处理机分配给它<运行频率高,一般几十毫秒一次>;
交换调度:
i 交换调度的定义:又称中级调度或中程调度,主要任务是按照给定的原则和策略,将处于外存对换区中又具备运行条件的进程调入内存,或将处于内存的暂时不能运行的进程交换到外存对换区<频率介于进程调度和作业调度中间>;
调度的性能
系统设计的目标
i 系统的处理能力高:使系统每天运行尽可能多的作业
ii 系统资源利用充分:使处理机保持忙碌状态,使设备保持忙碌状态,以达到充分利用资源的目的
iii 算法对所有的作业公平合理:使所有用户感到满意。
确定调度算法的因素
i 设计目标:选择的调度算法应与系统的总体设计目标一致;
ii 资源使用的均衡性:使输入输出繁忙的作业与CPU繁忙的作业搭配运行;
iii 平衡系统和用户的要求:使系统和用户能够达到较高的平衡要求。
调度算法的准则
i CPU利用率:CPU的利用率是评价调度算法的重要指标
ii 系统吞吐量:表示单位时间内CPU完成作业的数量
iii 周转时间:表示完成一个作业需要花费的时间
周转时间:是指从作业提交到作业完成之间的时间间隔;
T=T2-T1(T2是某一个作业完成时间,T1是某一个作业提交时间)
平均周转时间:是指多个作业周转时间的平均值;
T=(T1+T2…+Tn)/n(Tn是指n个作业的周转时间)
带权周转时间:是指作业周转时间与作业实际运行时间的比;
W=W1/W2(W1是某一作业的周转时间,W2是某一作业的实际运行时间)
平均带权周转时间:是指多个作业带权周转时间的平均值。
W=(W1+W2+Wn)(Wn是指n个作业的带权周转时间)
iv 响应时间:指从用户提交请求到系统首次产生响应所用的时间。
作业调度
作业的定义:是用户在一次解题或一个事务处理过程中要求计算机系统所做工作的集合,包括用户程序、数据以及命令等。
作业调度的定义:如上已给出
作业的状态
i 提交状态:用户作业由输入设备向系统外存输入时作业所处的状态
ii 收容状态:系统为外存的作业建立作业控制块,并把它插入到后备作业队列中等待调度运行时所处的状态
iii 运行状态:当作业调度程序选中一个作业,为它分配了必要的资源并建立了相应的进程之后所处的状态
iv 完成状态:当作业正常运行结束或因发生错误而终止运行时所处的状态
作业控制块(JCB)的主要内容
i 资源要求:是指作业运行所需要的资源情况,包括运行时间,最迟完成时间,内存量,外设类型以及数量等
ii 资源使用情况:包括作业进入系统的时间,开始运行时间,已运行时间,内存地址,外设台号等
iii 作业的控制方式:是联机作业控制还是脱机作业控制
iv 作业的类型:是终端型还是批量型,是I/O繁忙型还是CPU繁忙型
v 作业的优先级:指作业进入系统运行的优先级别
vi 作业名/号:作业的名称和唯一标识号
vii 作业状态:作业运行的当前状态
作业调度程序的主要工作
i 记录进入系统的各个作业情况
ii 从后备作业队列中挑选一个作业投入执行
iii 为被选中的作业做好执行前的准备工作
iv 在作业运行结束或过程中因某种原因需要撤离时,完成善后工作
进程调度
进程的定义:进程是程序在处理机上的一次执行过程,包括程序、数据以及进程控制块等信息。
进程调度的定义:如上已给出
进程调度程序的主要工作
i 记录系统中所有进程的有关情况及状态特征
ii 选择获得处理机的进程
iii 处理机分配
进程调度的原因
i 当前运行进程运行结束
ii 当前运行进程因某种原因,从运行状态进入阻塞状态
iii 当前运行进程执行某种原语 *** 作,进入阻塞状态
iv 执行完系统调用等系统程序后返回用户进程
v 在采用剥夺调度方式的系统中,高优先级的进程需要使用处理机
vi 在分时系统中,分配给进程的时间片已用完
进程调度的方式
i 定义:是指当某一个进程正在处理机上执行时,若有某个更为重要或紧迫的进程需要进行处理,此时该如何分配处理机
ii 抢占方式:又称剥夺方式、可剥夺方式、可抢占方式,可以被其他进程抢走处理机。
iii 非抢占方式:又称非剥夺方式、不可剥夺方式、不可抢占方式,直到该进程自动放弃处理机,否则不能抢走处理机。
调度的算法
先来先服务调度算法(First Come First Served,FCFS):按作业或进程达到的先后顺序进行调度。
i 优点:算法简单,有利于长作业,有利于CPU繁忙型;
ii 缺点:效率较低,不利于短作业,不利于I/O繁忙型。
短作业优先调度算法(Shortest Job First,SJF):按作业或进程运行时间的长短进行调度,优先调度运行时间最短的作业或进程
i 优点:较好的性能
ii 缺点:对长作业不利
优先级调度算法:按作业或进程的优先级进行调度,优先调度优先级高的作业或进程
i 静态优先级:在创建进程时确定优先级,确定之后整个进程运行期间不再改变,确定静态优先级的依据
进程类型
进程对资源的要求
用户要求
ii 动态优先级:在创建进程时确定优先级,在进程运行过程中再根据情况变化调整优先级,确定动态优先级的依据:
进程占有CPU的时间长短
就绪进程等待CPU的时间长短
时间片轮转调度算法(Round-Robin,RR):用于进程调度,将处理机时间分为很短的时间片,按照时间片轮流将处理机分配给就绪队列中的各个进程使用。时间片的确定依据:
i 系统的响应时间
ii 就绪队列中的进程数目
iii 系统的处理能力
高响应比优先调度算法(Highest Response Ration First,HRRF):是对先来先服务调度算法和短作业优先调度算法的综合,主要用于作业调度,选择响应比最高的作业投入运行
多级队列调度算法:将就绪队列划分成若干个子队列,每个进程固定属于一个子就绪队列,每个子就绪队列采用一种调度算法,不同的队列采用不同的调度算法
多级反馈队列调度算法:是对时间片轮转调度算法和优先级调度算法的综合,实现思想如下:
i 在系统中设置多个就绪队列,第1个队列的优先级最高,第2个队列次之,其余队列的优先级逐次降低;
ii 每个队列中进程的时间片与优先级成反比;
iii 当新进程进入系统时将它放入第1个队列末尾,按先来先服务的原则排队等待调度;当轮到该进程执行时,如果它在一个时间片内结束时未完成,调度程序便将该进程转入第2个队列的末尾,依次类推,
iv 仅当第1个队列为空时,调度程序才从第2个队列中选择进程运行,最后一个队列中使用时间片轮转调度算法,处理机调度采用抢占式优先级调度算法,当处理机正在执行第i个队列中的某个进程时,若其处理机被抢占则该进程仍然回到第i个队列末尾。
零测试
第一部分:实时调度算法
什么是实时系统,POSIX 1003b作了这样的定义:是指系统可以在有限响应时间内提供所需的服务级别。较可取被定义为由Donald乔利士的的:一个实时系统的程序的逻辑正确性不仅取决于计算的准确度,而且还对结果,如果系统时间的限制不能满足将是一个系统错误发生。
基于实时系统的实时性要求的不同,可分为软实时和硬实时两种。硬实时系统是指系统必须确保,在最坏情况下的服务时间,截止日期为事件的响应时间是在任何情况下,必须满足。如航天飞船的控制是这样一个系统的现实。所有其他实时系统的特点,可以称为软实时系统。如果清除,软实时系统是那些从统计学的角度来看,一个任务(在下面的讨论中,我们将有任务和过程不作出区分),以确保系统的处理时间,可以得到事件可以处理的最后期限到来之前,违反的最后期限,并不会带来一个致命的错误,如实时多媒体系统是一种软实时系统。
一台电脑系统的CPU和其他资源进行有效的调度和管理,以提供实时 *** 作系统的支持。的多任务的实时系统中,资源的调度和管理更复杂的。下面讨论本文将从各种实时任务调度算法的分类的角度来看,普通的Linux *** 作系统进程调度和各种实时Linux系统,然后研究,以支持实时特点,普通的Linux系统的改进。实时领域的一些问题,并总结了各种实时Linux的Linux *** 作系统,归根到底是如何解决这些问题。
CPU的实时调度算法的分类
多种实时 *** 作系统的实时调度算法可以分为以下三类Wang99] [Gopalan01]:基于优先级调度算法(优先级驱动调度PD),基于在共享的CPU使用率调度算法(分享驱动调度SD)的比例,以及基于时间的进程调度算法(时间驱动调度TD),下面这三种调度算法逐一介绍。
11
/>基于优先级的调度算法,基于优先级的调度算法,每个进程被分配一个优先级,每次的进程调度程序,调度程序总是具有最高的调度优先级的任务执行。根据不同的优先级分配方法,基于优先级的调度算法可以分为以下两种类型的Krishna01] [Wang99]:静态优先级调度算法
该算法得到这些系统中运行的所有进程都静态分配一个优先级。静态优先级分配的属性的应用程序,如任务循环中的用户优先级,或其他预先确定的政策。 RM(速率单调)的调度算法是一个典型的静态优先级的调度算法,根据执行的任务的调度优先级的周期的长度确定,那些具有小的执行周期的任务的优先级较高。
动态优先级调度算法:
该算法基于任务的资源需求动态地分配任务的优先级,资源分配和调度的目的更大的灵活性。非实时系统,这种算法有很多,如短作业优先级调度算法。任务的实时调度算法,EDF算法是使用最广泛的动态优先级调度算法,该算法根据他们的截止日期(截止日期)分配优先级的就绪队列中的每个任务,最近期限具有最高的优先级。
12
基于优先级调度算法的调度算法是简单而有效的,但这种算法的基础上按比例份额是一个硬实时调度,许多的情况下,不适合使用此算法:例如,软实时应用,如实时多媒体会议系统。对于软实时应用程序,共享资源调度算法(SD算法)的比例使用是更合适的。
比例共享调度算法是指对CPU使用率的比例共享调度算法,其基本思路是按照一定的权重(比率),需要一组调度安排任务,以使它们的权重成比例的执行时间。
要实现比例共享调度算法[Nieh01]有两种方法:第一种方法是调整的准备过程中出现的调度队列队第一频率,并安排一线队的过程中,执行第二种方法是连续调度进程就绪队列中投产,但根据调整分配一个进程的运行时间片分配的权重。
比例共享调度算法可以分为以下类别:循环赛,公平份额,公平排队,的**调度方法,(**)。
比例共享调度算法的一个问题是,它并没有定义任何优先的概念,所有的任务都根据其应用的CPU资源的比例共享系统过载时,执行的所有任务将较慢比例。因此,为了确保该系统的实时过程中获得一定量的CPU处理时间,一般采用的是动态权重的调整过程。
13。基于时间进程调度算法的调度算法
对于那些具有稳定,简单的系统已知输入,您可以使用时间驱动(驱动时间时间:TD)数据处理,它可以提供一个良好的预测。这种调度算法本质上是一个设计定型的离线静态调度方法。在系统的设计阶段,所有处理的情况下,在明确的制度,每个任务切换的开始和结束的时间提前做出了明确的安排和设计。该算法是适用于小型嵌入式系统,自动化控制系统,传感器和其他应用环境。
该算法的优势是良好的可预测性任务的执行,但最大的缺点是缺乏灵活性,而且会有一个任务需要执行,而CPU保持空闲。
一般的Linux系统CPU调度
一般的Linux系统支持实时和非实时两种进程,实时进程与普通进程方面具有绝对的优先权。相应地,实时进程调度策略SCHED_FIFO或SCHED_RR,普通进程SCHED_OTHER调度策略。
每个任务调度算法的实现在Linux四种调度参数,它们是rt_priority优先政策(尼斯),计数器。调度进程调度的基础上,这四个参数。
SCHED_OTHER调度策略,调度程序总是会选择优先级+计数器的值进程调度的执行。从逻辑分析存在SCHED_OTHER调度策略调度处理来执行,其特征在于,所述优先级是一个固定的调度周期(历元),在每个调度周期内的过程中的优先级,计数器的值的大小的影响这一刻已经确定变量值的过程中被创建时,它代表了进程的优先级,也代表数量的时间片,通过该方法可以得到在每个调度周期内,计数器是一个动态值,它反映了当前调度周期的过程中,剩余的时间片。在每个调度周期的开始,分配给优先级值计数器,那么每一次进程被调度运行计数器的值?减少。当计数器的值是零,这个过程已经运行的时间片调度期内,不再参与调度周期进程调度。当所有的进程都用完了时间片调度期结束,然后一遍又一遍。此外,可以看出在Linux系统中的调度周期是不固定的,它的量是动态变化的,例如,在运行的进程的数目和它们的优先级值?可以影响一个划时代的长度。有一点值得注意的是,在24内核中,首要任务是不错的替换两个类似的作用。
按比例分担的调度策略调度策略SCHED_OTHER可见的性质,它的这种设计方法,以确保进程调度的公平性 - 一个低优先级进程,在每个时代也将得到他们的份额那些CPU的执行时间,此外,它也提供了不同的进程的优先级,进程执行时间可以得到更多的具有高优先级值。
对于实时的过程中,他们使用基于实时优先级rt_priority的优先级调度策略,但相同的实时优先级的进程调度方法是根据不同的调度策略,
BR /> SCHED_FIFO:不同的进程,根据静态优先级排队,然后在相同的优先级队列,先准备好运行的第一谁调度和运行的进程不会被终止,直到发生以下情况:1。高优先级的进程篡夺了CPU;自己的资源请求受阻;自己主动放弃CPU(呼叫SCHED_YIELD);
SCHED_RR是这样的:这个调度策略SCHED_FIFO与上述完全相同,除了时间片分配给每个进程,正在实施的过程中,给执行时间片,时间片的长度可以通过sched_rr_get_interval调用
由于Linux系统本身是一个桌面导向的系统,因此,它是用于在实时应用中的一些问题:/> /> Linux系统调度单位是10ms,所以它不能提供精确的定时中断; p>当一个进程调用系统调用进入内核模式运行,它不能被抢占;
Linux内核实现大量采用了封闭中断 *** 作损失;
由于使用虚拟内存技术,当发生页面错误时,从硬盘中读取的数据交换的需要,但硬盘读取和写入的存储位置的随机性,将导致随机读取和写入时间,这在某些情况下,会影响实时任务期限;
虽然Linux的进程调度器还支持实时优先级,但由于缺乏有效的实时任务调度机制和调度算法;其网络子协议处理和其它设备的中断处理,调度伴有相应的过程和自己的有没有明确的调度机制;
各种实时Linux系统
Home>的的
31 RT-Linux和RTAI
RT-Linux是新墨西哥大学的研究(新墨西哥州技术学院)[RTLinuxWeb] [Barabanov97。其基本思路是,在Linux系统上的硬实时支持,它实现了一个微内核实时 *** 作系统(也被称为RT-Linux的实时子系统),而普通的Linux系统作为一个低优先级任务在 *** 作系统中运行。在正常的Linux系统的另一个任务可以沟通,通过FIFO和实时任务。 RT-Linux的框架如图1所示:
图1 RT-Linux的结构
RT-Linux的关键技术是软件模拟硬件中断控制器。当Linux系统不时阻止CPU中断,实时定量RT-Linux的子系统的请求拦截,爱不释手,而事实上并没有真正阻止硬件中断,从而避免了由于中断造成的封由系统在一段时间内没有响应,从而在改进的实时。当传递给Linux内核的RT-Linux的一个硬件中断到达截取的中断,并确定是否有一个实时子系统中断例程来处理或处理。此外,的最小定时的精度在正常的Linux系统是确定系统的实时时钟的频率,Linux的系统时钟被设置到时钟中断每秒100,所以在Linux的系统定时的精度10毫秒,即时钟周期10ms时,RT-Linux的实时时钟设置为单触发状态,可以提供更多的十几微秒调度粒度。
RT-Linux实时子系统的任务调度优先级驱动算法,RM,EDF等,也可用于其他调度算法。
RT-Linux的专有系统,重型工作,的确是一个不错的选择,但他只提供了CPU资源的调度和实时系统和Linux系统的关系不是非常密切,因此开发人员可以充分利用已在Linux系统中,如协议栈实现的功能。 RT-Linux的工业控制等实时任务简单和硬实时要求的环境,但大量的工作需要做,如果你想应用的多媒体处理。
意大利实时应用程序接口(RTAI)来自RT-Linux的,它是在设计和RT-Linux的思想相同。这是原来的设计中,为了解决问题,RT-Linux的不同版本的Linux之间很难很难移植,RTAI在Linux上定义的实时硬件抽象层,这个抽象层接口提供实时任务Linux系统的相互作用,这可以增加一点可以Linux内核源代码到Linux内核的实时支持。
32。 KURT-Linux的
KURT-Linux的堪萨斯大学开发的,它可以提供实时微秒精度[KurtWeb] [斯里尼瓦桑]。与RT-Linux的单独实现一个实时内核,KURT-Linux是常用的Linux系统的基础上实现的,这也是第一个基于Linux的实时系统可以使用普通的Linux系统调用。
KURT-Linux系统分为三种状态:正常状态,实时状态和混合状态,在正常状态下,它使用普通的Linux实时运行状态实时调度策略任务,实时和非实时任务的混合状态,可以执行实时状态可以被用来为实时的要求更加严格。
为了提高Linux系统的实时特性,有必要提高精度的时钟系统的支持。但是,如果只是简单地增加时钟频率将导致调度负载的增加,从而严重降低系统的性能。为了解决这个矛盾,KURT-Linux中使用的时钟精度的方法[UTIMEWeb]提高Linux系统UTIME,时钟芯片设置为单次触发状态(单拍模式),也就是每个时钟芯片设置超时,然后再次超时事件发生时,在时钟中断的处理程序所需的时钟芯片设置一个超时。其基本思想是一个精确的时间意味着我们需要的时钟中断发生时,我们需要一个更精确的时间,以达到这样的精度,但并不一定需要系统时钟频率。它采用了CPU时钟计数器时间戳计数器(TSC)提供准确的CPU频率精度的时间。
KURT-Linux的实时任务调度,使用静态CPU的实时调度算法,基于时间(TD)。实时任务需要实时事件发生在设计阶段就必须清楚列明。该算法可以实现更好的调度任务,对于那些谁周期。
KURT-Linux的相RT-Linux的优势之一是,你可以使用系统调用的Linux系统,它最初是专为硬实时支持,但因为它是简单的实现将使用一个简单的时间驱动调度取代Linux的调度,实时进程调度的影响等非实时任务,在某些情况下会发生实时任务的截止日期是脆弱的不符合的,也被称为严格的实时系统(快地实时)。基于KURT-Linux的应用程序:艺术(ATM参考交通系统),多媒体播放软件。 KURT-Linux的另一种方法,需要频繁的时钟芯片编程。
33。 RED-Linux的
RED-Linux是加州大学尔湾,实时Linux系统的发展[REDWeb] [Wang99],它将支持实时调度和Linux实现相同的 *** 作系统内核。它支持三种类型的调度算法,即:时间驱动优先Dirven,分享驱动。
为了提高系统的调度粒度,RED-Linux的学习RT-Linux的软件模拟中断的管理机制,并增加频率的时钟中断。 RED-Linux的中断仿真程序只是简单地中断会在队列中排队一个硬件中断到来时,并没有进行实际的中断处理程序。
另外,为了解决Linux的内核模式的过程中不能被中断,RED-Linux的插入Linux内核抢占点原语的众多功能,使这一进程在内核模式下,也在一定程度上被抢占。通过这种方法提高了内核的实时特性。
RED-Linux的设计目标是提供常规调度框架可以支持多种调度算法,系统为每个任务增加几个属性,进程调度的基础上:
优先级:作业的优先级;
开始时间:工作的开始时间;
完成时间:工作的结束时间; BR p>预算:资源的数量在 *** 作过程中要使用的工作;
调整值?这些属性和调度根据什么优先使用的这些属性值几乎所有的调度算法。在这种情况下,三种不同的调度算法无缝地一起耦合到一个统一的。
Linux26
版本的
Linux
内核使用了新的调度器算法,它是由
Ingo
Molnar开发的
O(1)调度器算法。它在高负载的情况下极其出色,并且对处理器调度有很好的扩展。
Linux24
版本的标准调度器中,使用时间片重算的算法。这种算法要求在所有的进程都用尽时间片以后,重新计算下一次运行的时间片。这样每次任务调度的花销不确定,可能因为计算比较复杂,产生较大调度延迟。特别是多处理器系统,可能由于调度的延迟,导致大部分处理器处于空闲
状态,影响系统性能。
新的调度器采用
O(1)的调度算法,通过优先级数组的数据结构来实现。优先级数组可以使每个优先级都有相应的任务队列,还有一个优先级位图,每个优先级对应位图中一位,通过位图可快速执行最高优先级任务。因优先级个数是固定的,所以查找的时间也固定,不受运行任务数的影响。
新的调度器为每个处理器维护
2
个优先级数组:有效数组和过期数组。有效数组内任务队列的进程都还有可以运行的时间片;过期数组内任务队列的进程都没有时间片可以执行。当一个进程的时间片用光时,就把它从有效数组移到过期数组,并且时间片也已经重新计算好了。当需要重新调度这些任务的时候,只要在有效数组和过期数组之间切换就好了。这种交换是O(1)算法的核心。
关于该算法的更多内容,google
一下!
以上就是关于Linux采用了哪几种调度方法各用于哪类进程的调度全部的内容,包括:Linux采用了哪几种调度方法各用于哪类进程的调度、为什么Linux CFS调度器没有带来惊艳的碾压效果| CSDN博文精选、Linux中常见IO调度器等相关内容解答,如果想了解更多相关内容,可以关注我们,你们的支持是我们更新的动力!
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)