1使用设计模式
设计模式是一个用来处理那些在软件中会重复出现的问题的解决方案。开发人员可以选择浪费宝贵的时间和预算从无到有地重新发明一个解决方案,也可以从他的解决方案工具箱中选择一个最适合解决这个问题的方案。在微出现之初,底层驱动已经很成熟了,那么,为什么不利用现有的成熟的解决方案呢?
驱动大致分属以下4个类别:Bit bang、轮询、中断驱动和直接存储器访问(DMA)。
Bit bang模式:
当没有内外设去执行功能的时候,或者当所有的内外设都已经被使用了,而此时又有一个新的请求,那么开发者就应该选择Bit bang设计模式。Bit bang模式的解决方案很有效率,但通常需要大量的软件开销来确保其实施。Bit bang模式可以让开发者手动完成通信协议或外部行为。
轮询模式用于简单地监视一个轮询调度方式中的事件。轮询模式适用于非常简单的系统,但许多现代应用程序都需要中断。
中断可以让开发者在事件发生时进行处理,而不用等代码手动检查。
DMA(直接存储器访问)模式允许其它来处理数据传输的需求,而不需要驱动的干预。
2了解实时行为
一个实时系统是否能满足实时需求取决于它的驱动程序。写入能力差的驱动是低效的,并可能使不知情的开发者放弃系统的性能。设计者需要考虑驱动的两个:阻塞和非阻塞。一个阻塞的驱动程序在其完成工作之前会阻止其他任何软件执行 *** 作。例如,一个USART驱动程序可以把一个字符装入传输缓冲区,然后一直等到接收到传输结束标志符才继续执行下一步 *** 作。
另一方面,非阻塞驱动则是一般利用中断来实现它的功能。中断的使用可以防止驱动程序在等待一个事件发生时拦截其他软件的执行 *** 作。USART的驱动程序可以将一个字符装入传输缓冲区然后等主程序发布下一个指令。传输结束标志符的设置会导致中断结束,让驱动进行下一步 *** 作。
无论哪种类型,为了保持实时性能,并防止系统中的故障,开发人员必须了解驱动的平均执行时间和最坏情况下的执行时间。一个完整的系统可能会因为一个潜在的风险而造成更大的安全问题。
3 重用设计
在时间和预算都很紧张的情况下为什么还要再造轮子呢?在中,重用、性和可维护性都是驱动设计的关键要求。这里面的许多特征可以通过硬件抽象层的设计和使用来说明。
硬件抽象层(HAL)为开发人员提供一种方式来创建一个标准接口去控制微控制器的外设。抽象隐藏实现细节,取而代之的是提供了可视化功能,如 Usart_Init和Usart_Trmit。这个方法就是让任何USART、SPI、PWM或其他外设具备所有微控制器都支持的共同特点。 使用HAL隐藏底层、特定设备的细节,让应用程序开发人员专注于应用的需求,而不是关注底层的硬件是如何工作的。同时HAL提供了一个重用的容器。
以上就是关于linux下阻塞,非阻塞,轮询全部的内容,包括:linux下阻塞,非阻塞,轮询、I/O *** 作的那些事儿:轮询 ,中断 , DMA ,通道(转载)、微驱动技术有哪些方法等相关内容解答,如果想了解更多相关内容,可以关注我们,你们的支持是我们更新的动力!
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)