你好,在你的程序基础上加上以下程序段(仅供参考,共同提高):
k=00001:00001:0014;
p=polyfit(k,y,4); %可以选择更高阶拟合,结果更准确
syms x;
f=p(1)x^4+p(2)x^3+p(3)x^2+p(4)x+p(5);
F=fourier(f);
pretty(F)
小波分析滤波我还在研究,望采纳~
1限幅滤波算法(程序判断滤波算法)
方法解析:
根据经验判断,确定两次采样允许的最大偏差值(设定为A),每次检测到新值时判断:
如果本次值与上次值之差<=A,则本次值有效,
如果本次值与上次值只差>A,则本次值无效,放弃本次值,用上次值代替本次值。
优点:
能有效克服因偶然因素引起的脉冲干扰
缺点:
无法抑制那种周期性的干扰,平滑度差
[cpp] view plain copy
#define A 10
char value;
char filter()
{
char new_value;
new_value = get_ad();
if ( ( new_value - value > A ) || ( value - new_value > A )
return value;
return new_value;
}
2中位值滤波法
方法解析:
连续采样N次(N取奇数),把N次采样值按大小排列,取中间值为本次有效值
优点:
能有效克服因偶然因素引起的波动干扰,对温度,液位的变化缓慢的被测参数有良好的滤波效果
缺点:
对流量,速度等快速变化的参数不宜
[cpp] view plain copy
#define N 11
char filter()
{
char value_buf[N];
char count,i,j,temp;
for ( count=0;count<N;count++)
{
value_buf[count] = get_ad();
delay();
}
for (j=0;j<N-1;j++)
{
for (i=0;i<N-j;i++)
{
if ( value_buf[i]>value_buf[i+1] )
{
temp = value_buf[i];
value_buf[i] = value_buf[i+1];
value_buf[i+1] = temp;
}
}
}
return value_buf[(N-1)/2];
}
3算术平均滤波
方法解析:
连续取N个采样值进行平均运算,N值较大时:信号平滑度较高,但灵敏度较低
N值较小时:信号平滑度较低,但灵敏度较高。N值的选取:一般12左右。
优点:
适应于对一般具有随机干扰的信号进行滤波,这样信号的特点是有一个平均值,信号在某一数值范围附近上下波动
缺点:
对于测量速度较慢或要求数据计算速度较快的实时控制并不适用,比较浪费RAM
[cpp] view plain copy
#define N 12
char filter()
{
int sum = 0;
for ( count=0;count<N;count++)
{
sum + = get_ad();
delay();
}
return (char)(sum/N);
4递推平均滤波(滑动平均滤波法)方法解析:
把连续取N个采样值看成一个队列,队列的长度固定为N,每次采样到一个新数据放入队尾,并扔掉原来队首的一次数据(先进先出)。
把队列中的N个数据进行算术平均运算,就可获得新的滤波结果。N值的选取:一般12
优点:
对周期性干扰有良好的抑制作用,平滑度高,适应于高频振荡的系统
缺点:
灵敏度低,对偶然出现的脉冲性干扰的抑制作用较差。不易消除由于脉冲干扰所引起打的采样值偏差,不适用于脉冲干扰比较严重的场合
浪费RAM
[cpp] view plain copy
#define N 12
char value_buf[N];
char i=0;
char filter()
{
char count;
int sum=0;
value_buf[i++] = get_ad();
if ( i == N ) i = 0;
for ( count=0;count<N,count++)
sum = value_buf[count];
return (char)(sum/N);
}
5中位值平均滤波法(防脉冲干扰平均滤波法)
方法解析:
相当于中位值滤波+算术平均滤波,连续采样N个数据,去掉一个最大值和一个最小值,然后计算N-2个数据的算术平均值。
N值的选取:3-14
优点:融合了两种滤波法的优点
对于偶然出现的脉冲性干扰,可消除由于脉冲干扰所引起的采样值偏差。
缺点:
测量速度较慢,和算法平均滤波一样,浪费RAM。
[cpp] view plain copy
#define N 12
char filter()
{
char count,i,j;
char value_buf[N];
int sum=0,temp=0;
for (count=0;count<N;count++)
{
value_buf[count] = get_ad();
delay();
}
for (j=0;j<N-1;j++)
{
for (i=0;i<N-j;i++)
{
if ( value_buf[i]>value_buf[i+1] )
{
temp = value_buf[i];
value_buf[i] = value_buf[i+1];
value_buf[i+1] = temp;
}
}
}
for(count=1;count<N-1;count++)
sum += value[count];
return (char)(sum/(N-2));
}
6一阶滞后滤波法
方法解析:
取a=0-1
本次滤波结果=(1-a)本次采样值+a上次滤波结果
优点:
对周期性干扰具有良好的抑制作用,适用于波动频率较高的场合
缺点:
相位滞后,灵敏度低,滞后程度取决于a值的大小,不能消除滤波频率高于采样频率的1/2的干扰信号
[cpp] view plain copy
#define a 50
char value;
char filter()
{
char new_value;
new_value = get_ad();
return (100-a)value + anew_value;
}
7加权递推平均滤波法
方法解析:
是对递推平均滤波法的改进,即不同时刻的数据加以不同的权
通常是,越接近现时刻的数据,权取得越大,给予新采样值的权系数越大,则灵敏度越高,但信号平滑度越低。
优点:
适用于有较大纯滞后时间常数的对象,和采样周期较短的系统
缺点:
对于纯滞后时间常数较小,采样周期较长,变化缓慢的信号,不能迅速反应系统当前所受干扰的严重程度,滤波效果差。
[cpp] view plain copy
#define N 12
char code coe[N] = {1,2,3,4,5,6,7,8,9,10,11,12};
char code sum_coe = 1+2+3+4+5+6+7+8+9+10+11+12;
char filter()
{
char count;
char value_buf[N];
int sum=0;
for (count=0,count<N;count++)
{
value_buf[count] = get_ad();
delay();
}
for (count=0,count<N;count++)
sum += value_buf[count]coe[count];
return (char)(sum/sum_coe);
}
8消抖滤波法
方法解析:
设置一个滤波计数器,将每次采样值与当前有效值比较:
如果采样值=当前有效值,则计数器清零,如果采样值<>当前有效值,则计数器+1,并判断计数器是否>=上限N(溢出),如果计数器溢出,则将本次值替换当前有效值,并清计数器
优点:
对于变化缓慢的被测参数有较好的滤波效果,可避免在临界值附近控制器的反复开/关跳动或显示器上数值抖动。
缺点:
对于快速变化的参数不宜,如果在计数器溢出的那一次采样到的值恰好是干扰值,则会将干扰值当作有效值导入系统
[cpp] view plain copy
#define N 12
char filter()
{
char count=0;
char new_value;
new_value = get_ad();
while (value !=new_value);
{
count++;
if (count>=N) return new_value;
delay();
new_value = get_ad();
}
return value;
}
10低通数字滤波
解析:
低通滤波也称一阶滞后滤波,方法是第N次采样后滤波结果输出值是(1-a)乘第N次采样值加a乘上次滤波结果输出值。可见a<<1。
该方法适用于变化过程比较慢的参数的滤波的C程序函数如下:
[cpp] view plain copy
float low_filter(float low_buf[])
{
float sample_value;
float X=001;
sample_value=(1_X)low_buf[1]+Xlow buf[0];
retrun(sample_value);
}
以上就是关于跪求matlab程序大神!如何对这个一维信号进行傅立叶变换和小波分析滤波呢跪求答案!!!全部的内容,包括:跪求matlab程序大神!如何对这个一维信号进行傅立叶变换和小波分析滤波呢跪求答案!!!、如何用delphi编程实现低通滤波、等相关内容解答,如果想了解更多相关内容,可以关注我们,你们的支持是我们更新的动力!
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)