服务器的集群系统是比较复杂的功能,这个得根据你业务的需求来确定使用什么架构。
如果是做mysql的集群,可以使用mycat中间件做读写分离,也可以使用MHA,来实现MySQL的集群。
如果要是做web项目的话,则可以使用LVS+Keepalived来实现。也可以使用Nginx做反向代理。
现在比较火的可能是虚拟化,就是配置一台高配服务器,在其中运行docker或者openstack等虚拟化技术也可以实现集群的功能,有个弊端就是宿主机一旦故障,整个业务全部瘫痪,当然,这样是比较节省开销的。
1选择插入选项卡中的插图功能集合,单击Smartart选项。
2打开选择smartar图形对话框,我们可以看到各种图形模板,选择层次结构。
3单击确定后,就会生成一个最基本的组织架构图框架。
4点击图标即可看到功能选项中多出了设计选项。单击设计选项下的添加形状。
Microsoft Excel是Microsoft为使用Windows和Apple Macintosh *** 作系统的电脑编写的一款电子表格软件。直观的界面、出色的计算功能和图表工具,再加上成功的市场营销,使Excel成为最流行的个人计算机数据处理软件。
在1993年,作为Microsoft Office的组件发布了50版之后,Excel就开始成为所适用 *** 作平台上的电子制表软件的霸主。
Microsoft Office是一套由微软公司开发的办公软件套装,它可以在Microsoft Windows、Windows Phone、Mac系列、iOS和Android等系统上运行。
与其他办公室应用程序一样,它包括联合的服务器和基于互联网的服务。从2007版的Office被称为“Office System”而不叫“Office Suite”,反映出它们包括服务器的事实。
百度百科-Excel
分布式和集群其实就好像权限或者表的水平切割和垂直切割,集群是一种水平切割来分担压力的形式,分布式就好像一个垂直切割来分担压力一样。分布式必定包含集群。一、为什么要集群?
1JavaEE项目,如果部署在一台Tomcat上,所有的请求,都由这一台服务器处理,存在很大风险:
A:并发处理能力有限
(一般单台服务器处理的并发量为250左右,超过250,可能会出现数据丢失,链接不稳定的情况)。因为单服务器的性能有限制。所以单台Tomcat的最大连接数有限制,
B:容错率低,一旦服务器故障,整个服务就无法访问了。
eBay于 1999年6月停机22小时的事故,中断了约230万的拍卖,使eBay的股票下降了92个百分点。
C:单台服务器计算能力低,无法完成复杂的海量数据计算。
提高CPU主频和总线带宽是最初提供计算机性能的主要手段。但是这一手段对系统性能的提供是有限的。接着人们通过增加CPU个数和内存容量来提高性能,于是出现了向量机,对称多处理机(SMP)等。但是当CPU的个数超过某一阈值,这些多处理机系统的可扩展性就变的极差。主要瓶颈在于CPU访问内存的带宽并不能随着CPU个数的增加而有效增长。与SMP相反,集群系统的性能随着CPU个数的增加几乎是线性变化的。
使用集群架构完成工作主要有以下几点决定:
1、高性能计算
一些国家重要的计算密集型应用(如天气预报,核试验模拟等),需要计算机有很强的运算处理能力⌄以全世界现有的技术,即使是大型机器,其计算能力也是有限的,很难单独完成此任务。因为计算时间可能会相当长,也许几天,甚至几年或更久。因此,对于这类复杂的计算业务,便使用了计算机集群技术,集中几十上百台,甚至成千上万台计算机进行计算。
2、价格有效性
早期的淘宝,支付宝的数据库等核心系统就是使用上百万元的小型机服务器。后因使用维护成本太高以及扩展设备费用成几何级数翻倍,甚至成为扩展瓶颈,人员维护也十分困难,最终使用PC服务器集群替换之,比如,把数据库系统从小机结合Oracle数据库迁移到MySQL开源数据库结合PC服务器上来。不但成本下降了,扩展和维护也更容易了。
3、可伸缩性
当服务负载,压力增长时,针对集群系统进行较简单的扩展即可满足需求,且不会降低服务质量。
通常情况下,硬件设备若想扩展性能,不得不增加新的CPU和存储器设备,如果加不上去了,就不得不购买更高性能的服务器,就拿我们现在的服务器来讲,可以增加的设备总是有限的。如果采用集群技术,则只需要将新的单个服务器加入现有集群架构中即可,从访问的客户角度来看,系统服务无论是连续性还是性能上都几乎没有变化,系统在不知不觉中完成了升级,加大了访问能力,轻松地实现了扩展。集群系统中的节点数目可以增长到几千乃至上万个,其伸缩性远超过单台超级计算机。
4、高可用性
单一的计算机系统总会面临设备损毁的问题,如CPU,内存,主板,电源,硬盘等,只要一个部件坏掉,这个计算机系统就可能会宕机,无法正常提供服务。在集群系统中,尽管部分硬件和软件还是会发生故障,但整个系统的服务可以是724小时可用的。
集群架构技术可以使得系统在若干硬件设备故障发生时仍可以继续工作,这样就将系统的停机时间减少到了最小。集群系统在提高系统可靠性的同时,也大大减小了系统故障带来的业务损失,目前几乎100%的互联网网站都要求724小时提供服务。
5、透明性
多个独立计算机组成的松耦合集群系统构成一个虚拟服务器。用户或客户端程序访问集群系统时,就像访问一台高性能,高可用的服务器一样,集群中一部分服务器的上线,下线不会中断整个系统服务,这对用户也是透明的。
6、可管理性
整个系统可能在物理上很大,但其实容易管理,就像管理一个单一映像系统一样。在理想状况下,软硬件模块的插入能做到即插即用。
7、可编程性
在集群系统上,容易开发及修改各类应用程序。
蓝海大脑水冷工作站超融合架构承担着计算资源池和分布式存储资源池的作用,极大地简化了数据中心的基础架构,通过软件定义的计算资源虚拟化和分布式存储架构实现无单点故障、无单点瓶颈、d性扩展、性能线性增长等能力。通过简单方便的统一管理界面,实现对数据中心计算、存储、网络、虚拟化等资源的统一监控、管理和运维。
型号 蓝海大脑水冷服务器
英特尔
处理器 Intel Xeon Gold 6240R 24C/48T,24GHz,3575MB,DDR4 2933,Turbo,HT,165W1TB
Intel Xeon Gold 6258R 28C/56T,27GHz,3855MB,DDR4 2933,Turbo,HT,205W1TB
Intel Xeon W-3265 24C/48T 27GHz 33MB 205W DDR4 2933 1TB
Intel Xeon Platinum 8280 28C/56T 27GHz 385MB,DDR4 2933,Turbo,HT 205W 1TB
Intel Xeon Platinum 9242 48C/96T 38GHz 715MB L2,DDR4 3200,HT 350W 1TB
Intel Xeon Platinum 9282 56C/112T 38GHz 715MB L2,DDR4 3200,HT 400W 1TB
AMD
处理器 AMD锐龙Threadripper Pro 3945WX 40GHz/12核/64M/3200/280W
AMD锐龙Threadripper Pro 3955WX 39GHz/16核/64M/3200/280W
AMD锐龙Threadripper Pro 3975WX 35GHz/32核/128M/3200/280W
AMD锐龙Threadripper Pro 3995WX 27GHz/64核/256M/3200/280W
AMD锐龙Threadripper Pro 5945WX 41G 12核/64M/3200/280W
AMD锐龙Threadripper Pro 5955WX 40G 16核/64M/3200/280W
AMD锐龙Threadripper Pro 5965WX 38G 24核/128M/3200/280W
AMD锐龙Threadripper Pro 5975WX 36G 32核/128M/3200/280W
AMD锐龙Threadripper Pro 5995WX 27G 64核/256M/3200/280W
显卡 NVIDIA A100×4, NVIDIA GV100×4
NVIDIA RTX 3090×4, NVIDIA RTX 3090TI×4,
NVIDIA RTX 8000×4, NVIDIA RTX A6000×4,
NVIDIA Quadro P2000×4,NVIDIA Quadro P2200×4
硬盘 NVMe2 SSD: 512GB,1TB; M2 PCIe - Solid State Drive (SSD),
SATA SSD: 1024TB, 2048TB, 5120TB
SAS:10000rpm&15000rpm,600GB,12TGB,18TB
HDD : 1TB,2TB,4TB,6TB,10TB
外形规格 立式机箱
210尺寸mm(高深宽) : 726 x 616 x 266
210A尺寸mm(高深宽) : 666 x 626 x 290
210B尺寸mm(高深宽) : 697 x 692 x 306
声卡:71通道田声卡
机柜安装 : 前置机柜面板或倒轨(可选)
电源 功率 : 1300W×2; 2000W×1
软件环境 可预装 CUDA、Driver、Cudnn、NCCL、TensorRT、Python、Opencv 等底层加速库、选装 Tensorflow、Caffe、Pytorch、MXnet 等深度学习框架。
前置接口 USB32 GEN2 Type-C×4
指承灯电和硬盘LED
灵动扩展区 : 29合1读卡器,eSATA,1394,PCIe接口(可选)
读卡器 : 9合1SD读卡器(可选)
模拟音频 : 立体声、麦克风
后置接口 PS2接口 : 可选
串行接口 : 可选
USB32 GEN2 Type-C×2
网络接口 : 双万兆 (RJ45)
IEEE 1394 : 扩展卡口
模拟音频 : 集成声卡 3口
连接线 专用屏蔽电缆(信号电缆和电源电缆)
资料袋 使用手册、光盘1张、机械键盘、鼠标、装箱单、产品合格证等
运维人员的工作每天基本上都是在检查问题,枯燥但又重要, 要是你的某一个环节出现问题并没有及时发现问题,对于企业来说损失可能非常大,基本上运维人每天的工作我罗列了下,有这几种:
1、负责服务器的硬件配置、软件安装、机房上下架等技术维护工作
2、负责虚拟化技术产品物理机配置、管理和日常运行监控和维护
3、负责独立主机或虚拟应用产品的开通使用、日常维护、故障诊断和排除
4、提供独立主机或虚拟应用客户产品 *** 作和应用方面的技术支持
5、监视分管的服务器,及时发现问题,并积极解决问题
现在信息化数字时代,单靠人工去检查出现错误几率会很大,而且有的运维人还不只管理两台服务器,像我们公司的运维每人至少要管理30台服务器,这样子单靠人工运维耗费的人工成本和时间是非常大的,所以还是推荐你用运维工具吧,比如云帮手()1支持跨云商批量管理服务器
2兼容性强大,兼容市面基本所有的云商云主机,兼容 *** 作系统;
3 *** 作简单,可视化界面预览资源、一键修复、一键部署;
4 可以远程登录云主机FTP桌面,处理云主机上的文件;
5监控和资源还有告警功能,这个是挺好的,不用盯着看;
6系统修复功能,这个是挺实用也比较必须的;
7免费使用。总得来说功能还是挺全的,不存在需要又要另外找软件的尴尬。
你好,很高兴回答你这个问题。从运维的角度来讲,服务器的数量少并不意味着我们的运维工作就非常轻松,相反我们更应该重视此阶段的工作。
我们可以从以下几方面来开展我们的运维工作:
1应用服务器
我们可以从当前服务器中找出 至少2个节点装Vsphere虚拟化,建立一个数据中心、集群 ;如果你的服务器有多网卡和SCSI,还可以做一些更高级的应用,如vmotion、负载均衡、高可用等。当虚拟机或服务器故障,可以 实现故障自动转移,有效的避免了单节点的故障,提供服务器的容错率 。
我们可以在新建的虚拟机部署Web、API等各种应用,而且 虚拟机可以在vCenter图形化界面下统一管理 。这一般是中小公司的在服务器方面的解决方案。
当然,我们对docker比较熟悉,可以使用一套docker解决方案,这比Vsphere更能节省一部分资源。当然这个需要的技能要求也比较高,需要我们不断积累。
2数据库服务器
数据库服务器在此我们单独拿出来,是因为数据库对服务器性能、磁盘IO要求比较高,不太建议使用虚拟机,当然这需要根据业务的实际情况来做选择。 数据库我们需要通过一主一从、一主二从的方式实现高可用,来避免数据库单点问 题,我们还可以选择合适的proxy来进行读写分离、读负载均衡等。另外还要考虑数据的本地备份、异地备份,来确保数据可恢复。
3系统监控
当我们在应用服务器和数据库服务器上线一套系统后, 我们需要通过监控掌握从服务器硬件、基础状态、应用、数据库等从下到上的运行状态 ,以便我们能够对告警及时做出响应。考虑到报警的及时性,我们需要监控接入多种报警渠道,如微信、钉钉、邮件、短信等。监控的目的是发现问题、解决访问,因此我们需要踏实的做好这一步,才能为我们的业务保驾护航。
好了,其实不管服务器多少,我们都需要扎实的把基础打好,这样才能以不变应万变面对各种情形。希望我的回答能够帮到你。
题主没有详细说明具体应用系统的功能,比如是否单一的Web服务?有没有微服务、分布式、集群化扩展的潜在需求?
通常来说,建议使用云服务自动化运维。云服务已经成为IT技术的核心基础设施,充分利用云服务带来的d性和分布式优势,赋能自动化运维。
一,自动构建系统
如果需要构建应用,那么就建议配置使用CI/CD持续化集成和自动化部署,比如常用的Jenkins,配置Git代码提交时触发构建,然后自动部署。
二,日志收集处理系统
1,ELK是常见的日志收集管理系统,包括ElasticSearch, LogStash, Kibana三个服务,架构示意图如下:
2,在ELK系统中,Kibana是一个图形化展示工具,配置查询条件,运维人员随时可以搜索指定日志信息,分析处理故障。
三,服务监控
1,云监控CloudMonitor
主流云服务商都将监控功能集成到了基础架构中,以阿里云为例,云监控提供了多种配置,多维度全方位监控。
比如配置CPU使用率到达80%时,自动触发动作,增加服务器实例,同时邮件通知运维人员。
2,应用监控
以监控宝为例,配置服务地址,选择分布在不同地区和运营商的监测点。当监测点不能正常调用配置的服务地址时,将收到警告信息,可以选择邮件、短信、电话等通知方式。
1,是否集群化部署?需要AutoScaling自动伸缩吗?
小型化和集群化并不冲突。如果采用集群化部署,可以配置触发条件,满足时自动增加或者释放服务器资源。比如当CPU使用率达到75%或者内存占用率达到75%时,根据配置好的服务器和数量,自动触发。
2,是否使用Docker容器技术?
Docker将应用以及依赖打包到一个可移植的镜像中,可以实现虚拟化,有助于快捷高效的交付应用,结合Docker-compose资源编排,快速实现自动部署更新,不再需要常用的Jenkins构建服务器。
机器数比较小的话,你可以用云的服务器,这样可以节省好多钱。找一个专门的运维,还不如让开发自己来搞,因为机器少运维他也应付得过来。现在都在搞云计算了,把你的机器放上阿里云或者腾讯云,你自己维护好很多,包括网络贷款都很容易扩容。上面这个我说到的只是说建议你如果你已经是自己的机器了。我建议你从我下面所说的来搞。
认为的整个过程的话一般分为三个阶段,第一的话是手工阶段,什么东西都是手工搞。
第2个阶段就是脚本阶段了,本来手工搞的东西全部脚本化。
第3个阶段就是平台化了,平台化了之后,所有东西都在页面上完成系统完成,不需要人工来干预,甚至不用运维来搞。
有一些人说既然认为就是最后的一个阶段,但是这个很不成熟。所以我就不说了。
针对你这个机器数少的,你可以手工认为,或者说用脚本认为都没问题。
在合适的阶段做合适的事情就是最好的。所以我建议你手工运维或者脚本运维。
我们项目用的 wgcloud运维监控系统 ,它前身是开源项目,后来推出的商业版,也有免费版
wgcloud运行很稳定,性能很好,部署和上手容易
wgcloud支持主机各种指标监控(cpu状态/温度,内存状态,磁盘容量/IO,硬盘smart监控,系统负载,网卡流量,硬件系统信息等),数据可视化,进程应用监控,大屏可视化,服务接口检测,DOCKER监控,自动生成网络拓扑图,端口监控,日志文件监控,web SSH(堡垒机),指令下发执行,告警信息推送(邮件钉钉微信短信等)
可以装虚拟机代替,在同一个局域网情况下
找服务商外包服务,或者网上托管也不贵收费
服务器数量比较少,比如10台服务器,基本可以不设置运维岗位了,后端开发人员 或者架构师就能搞定。
我就是那种曾经在创业的小公司待过的开发人员,开发,运维我都干了。
但是想想如何更科学更高效的运维还是很有必要的。
软件系统的运行时环境:即公司的业务产线,靠它创造业务价值,这个是最核心的功能诉求。
实时监控系统: 任何时候都要对当前公司的产线的压力一清二楚,有问题功能随时解决,有性能问题及时扩容或者回收资源
降低服务器成本:在业务萎缩的情况下,准确评估哪些资源可以回收,降低服务器的支出
这个是当时我认为的运维的三个主要目的。
运维方案开发半路出家,当时采用的是shell+python+ansible+jekins+elk的方式
首先,我会及时的更新业务产线的物理架构图,根据架构图来规划服务器的资源使用。
比如多少个web服务,数据库多少,zk,kafka,redis集群怎么分布。
集群部署一般是放在多个服务器上的,这个时候ansible就派上用场了。
jekins主要用来自动发布更新程序已经做定时回收磁盘的任务。
elk主要用来做应用的日志系统和监控告警; 可以通过看板随时知道产线的请求数量和并发数量;
以上的运维方案适用于小公司。运维工程师看到了可以补充
搞个zabbix刷
数量少。如果配置好可以虚拟化。然后跑容器
架构图如下图所示。这张图基本涵盖了互联网技术公司的大部分技术点,不同公司只是在具体的技术实现上稍有差异,但不会跳出这个框架的范畴。
SQL: 常用的有mysql,用于存储业务数据。互联网发展初期,各个业务一般都会独立运营mysql集群,但随着业务越来越多,mysql集群规模越来越大,那就有必要做成SQL平台。
NoSQL: 翻译为Not Only SQL,作为mysql的一种补充。Nosql一般本身就提供集群,且使用起来很方便,公司业务发展初期没有必要。一般Nosql集群的数量越来越多,那就有必要做成Nosql平台。
小文件: 互联网中有很多小文件,比如商品,Facebook的。这类小文件具有数据小、数量巨大、访问大的特点。如果每个业务都去考虑小文件存储的话,就会出现重复造轮子现象,那就有必要做成小文件平台了。
大文件: 互联网的大文件主要分为两类:一类是业务上的大数据,例如Youtube的视频、网站的;另一类是海量的日志数据,例如各种访问日志。实力雄厚的一些大公司会基于开源方案做成大数据平台。
开发框架: 比如常见的Spring框架。
Web服务器: 常见的有tomcat、jetty等。
容器: Docker可以极大降低运维成本,以及在实现动态扩容上非常方便。
配置中心: 故名思义,配置中心就是集中管理各个系统的配置。
服务中心: 解决跨系统依赖的配置和调度问题。比如有10个系统依赖A系统的x接口,此时A系统实现了一个y接口可以更好地支持x接口,那么如果直接更新10个系统依赖的配置将会很麻烦。
消息队列: 支持系统解耦。
负载均衡: 充当任务分配器的职责。
CDN: 可以对一些常用文件进行就近缓存,来提高访问速度。
多机房: 多机房的主要目的是备灾,当机房故障时可以快速地将业务切换到另外一个机房,这种切换 *** 作允许一定时间的中断,比如10分钟,1个小时。
多中心: 多中心的要求就更高了,要求同时对外提供服务,且业务能够自动在多中心之间切换,故障后不需人工干预或者很少的人工干预就能自动恢复。
用户管理: 对各个系统的用户进行统一管理。
消息推送: 根据不同途径分为短信、邮件、站内信、App推送。
存储云: 实现是CDN+小文件存储。
云: 实现也是CDN+小文件存储。为何不与存储云统一一套系统呢?这是因为业务的复杂性导致的。涉及的业务会更多,包括裁剪、压缩、美化、审核、水印等。
业务千差万别,各个互联网业务面对的主要问题是复杂度越来越高。此时就要用到拆和合的技术。拆即将一个大系统拆分为多个子系统,降低复杂度。当子系统越来越多,有可能就需要采用合的技术。
测试平台的核心目的是提升测试效率。
运维平台的核心职责分为四大块:配置、部署、监控、应急。
数据平台的核心职责主要包含三部分:数据管理、数据分析和数据应用。
管理平台的核心职责就是权限管理。
服务器集群:服务器集群就是指将很多服务器集中起来一起进行同一种服务,在客户端看来就像是只有一个服务器。集群可以利用多个计算机进行并行计算从而获得很高的计算速度,也可以用多个计算机做备份,从而使得任何一个机器坏了整个系统还是能正常运行。
服务器负载均衡:
负载均衡
(Load
Balancing)
建立在现有网络结构之上,它提供了一种廉价有效透明的方法扩展网络设备和服务器的带宽、增加吞吐量、加强网络数据处理能力、提高网络的灵活性和可用性。
分布式服务器:
所谓分布式资源共享服务器就是指数据和程序可以不位于一个服务器上,而是分散到多个服务器,以网络上分散分布的地理信息数据及受其影响的数据库 *** 作为研究对象的一种理论计算模型服务器形式。分布式有利于任务在整个计算机系统上进行分配与优化,克服了传统集中式系统会导致中心主机资源紧张与响应瓶颈的缺陷,解决了网络GIS
中存在的数据异构、数据共享、运算复杂等问题,是地理信息系统技术的一大进步。
这个三种架构都是常见的服务器架构,集群的主要是IT公司在做,可以保障重要数据安全;负载均衡主要是为了分担访问量,避免临时的网络堵塞,主要用于电子商务类型的网站;分布式服务器主要是解决跨区域,多个单个节点达到高速访问的目前,一般是类似CDN的用途的话,会采用分布式服务器。
纯手工打字,希望可以帮的到你!
1选择插入选项卡中的插图功能集合,单击Smartart选项。
2打开选择smartar图形对话框,我们可以看到各种图形模板,选择层次结构。
3单击确定后,就会生成一个最基本的组织架构图框架。
4点击图标即可看到功能选项中多出了设计选项。单击设计选项下的添加形状。
MicrosoftExcel是Microsoft为使用Windows和AppleMacintosh *** 作系统的电脑编写的一款电子表格软件。直观的界面、出色的计算功能和图表工具,再加上成功的市场营销,使Excel成为最流行的个人计算机数据处理软件。
在1993年,作为MicrosoftOffice的组件发布了50版之后,Excel就开始成为所适用 *** 作平台上的电子制表软件的霸主。
MicrosoftOffice是一套由微软公司开发的办公软件套装,它可以在MicrosoftWindows、WindowsPhone、Mac系列、iOS和Android等系统上运行。
与其他办公室应用程序一样,它包括联合的服务器和基于互联网的服务。从2007版的Office被称为“OfficeSystem”而不叫“OfficeSuite”,反映出它们包括服务器的事实。
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)