unix的哲学是一切皆文件,可以把socket看成是一种特殊的文件,而一些socket函数就是对其进行的 *** 作api(读/写IO、打开、关闭)。我们知道普通文件的打开 *** 作(open)返回一个文件描述字,与之类似,socket()用于创建一个socket描述符(socket descriptor),它唯一标识一个socket。
当我们调用socket创建一个socket时,返回的socket描述字它存在于协议族(address family,AF_XXX)空间中,但没有一个具体的地址。如果想要给它赋值一个地址,就必须调用bind()函数,
sockfd即socket描述字,它是通过socket()函数创建了,唯一标识一个socket。bind()函数就是将给这个描述字绑定一个名字。
在将一个地址绑定到socket的时候,需要先将主机字节序转换成为网络字节序,而不要假定主机字节序跟网络字节序一样使用的是Big-Endian。由于这个问题曾引发过不少血案,谨记对主机字节序不要做任何假定,务必将其转化为网络字节序再赋给socket。
这里的主机字节序就是我们平常说的大端和小端模式:不同的CPU有不同的字节序类型,这些字节序是指整数在内存中保存的顺序,这个叫做主机序。引用标准的Big-Endian和Little-Endian的定义如下:
listen函数的第一个参数即为要监听的socket描述字,第二个参数为socket可以接受的排队的最大连接个数。listen函数表示等待客户的连接请求。
connect函数的第一个参数即为客户端的socket描述字,第二参数为服务器的socket地址,第三个参数为socket地址的长度。客户端通过调用connect函数来建立与TCP服务器的连接。
TCP服务器端依次调用socket()、bind()、listen()之后,就会监听指定的socket地址了。TCP客户端依次调用socket()、connect()之后就向TCP服务器发送连接请求。TCP服务器监听到这个请求之后,就会调用accept()函数去接收请求,这样连接就建立好了(在connect之后就建立好了三次连接),之后就可以开始进行类似于普通文件的网络I/O *** 作了。
如果accpet成功,那么其返回值是由内核自动生成的一个全新的描述字,代表与客户的TCP连接。
accept的第一个参数为服务器的socket描述字,是服务器开始调用socket()函数生成的,称为监听socket描述字;而accept函数返回的是已连接的socket描述字。一个服务器通常通常仅仅只创建一个监听socket描述字,它在该服务器的生命周期内一直存在。内核为每个由服务器进程接受的客户连接创建了一个已连接socket描述字,当服务器完成了对某个客户的服务,相应的已连接socket描述字就被关闭。
read函数是负责从fd中读取内容当读成功时,read返回实际所读的字节数,如果返回的值是0表示已经读到文件的结束了,小于0表示出现了错误。如果错误为EINTR说明读是由中断引起的,如果是ECONNREST表示网络连接出了问题。
write函数将buf中的nbytes字节内容写入文件描述符fd成功时返回写的字节数。失败时返回-1,并设置errno变量。 在网络程序中,当我们向套接字文件描述符写时有俩种可能。1)write的返回值大于0,表示写了部分或者是全部的数据。2)返回的值小于0,此时出现了错误
在服务器与客户端建立连接之后,会进行一些读写 *** 作,完成了读写 *** 作就要关闭相应的socket描述字,类似于 *** 作完打开的文件要调用fclose关闭打开的文件。
close一个TCP socket的缺省行为时把该socket标记为已关闭,然后立即返回到调用进程。该描述字不能再由调用进程使用,也就是说不能再作为read或write的第一个参数
close *** 作只是使相应socket描述字的引用计数-1,只有当引用计数为0的时候,才会触发TCP客户端向服务器发送终止连接请求。
我们知道tcp建立连接要进行“三次握手”,即交换三个分组。大致流程如下:
客户端向服务器发送一个SYN J
服务器向客户端响应一个SYN K,并对SYN J进行确认ACK J+1
客户端再想服务器发一个确认ACK K+1
socket中TCP的四次握手释放连接详解
某个应用进程首先调用close主动关闭连接,这时TCP发送一个FIN M;另一端接收到FIN M之后,执行被动关闭,对这个FIN进行确认。一段时间之后,服务端调用close关闭它的socket。这导致它的TCP也发送一个FIN N;接收到这个FIN的源发送端TCP对它进行确认,这样每个方向上都有一个FIN和ACK。
为什么要三次握手
由于tcp连接是全双工的,存在着双向的读写通道,每个方向都必须单独进行关闭。当一方完成它的数据发送任务后就可以发送一个FIN来终止这个方向的连接。收到FIN只意味着这个方向上没有数据流动,但并不表示在另一个方向上没有读写,所以要双向的读写关闭需要四次握手,
3 time_wait状态如何避免?
首先服务器可以设置SO_REUSEADDR套接字选项来通知内核,如果端口忙,但TCP连接位于TIME_WAIT状态时可以重用端口。在一个非常有用的场景就是,如果你的服务器程序停止后想立即重启,而新的套接字依旧希望使用同一端口,此时SO_REUSEADDR选项就可以避免TIME_WAIT状态。
1客户端连接服务器的80服务,这时客户端会启用一个本地的端口访问服务器的80,访问完成后关闭此连接,立刻再次访问服务器的
80,这时客户端会启用另一个本地的端口,而不是刚才使用的那个本地端口。原因就是刚才的那个连接还处于TIME_WAIT状态。
2客户端连接服务器的80服务,这时服务器关闭80端口,立即再次重启80端口的服务,这时可能不会成功启动,原因也是服务器的连
接还处于TIME_WAIT状态。
实战分析:
状态描述:
CLOSED:无连接是活动的或正在进行
LISTEN:服务器在等待进入呼叫
SYN_RECV:一个连接请求已经到达,等待确认
SYN_SENT:应用已经开始,打开一个连接
ESTABLISHED:正常数据传输状态
FIN_WAIT1:应用说它已经完成
FIN_WAIT2:另一边已同意释放
ITMED_WAIT:等待所有分组死掉
CLOSING:两边同时尝试关闭
TIME_WAIT:另一边已初始化一个释放
LAST_ACK:等待所有分组死掉</pre>
命令解释:
如何尽量处理TIMEWAIT过多
编辑内核文件/etc/sysctlconf,加入以下内容:
netipv4tcp_syncookies = 1 表示开启SYN Cookies。当出现SYN等待队列溢出时,启用cookies来处理,可防范少量SYN攻击,默认为0,表示关闭;
netipv4tcp_tw_reuse = 1 表示开启重用。允许将TIME-WAIT sockets重新用于新的TCP连接,默认为0,表示关闭;
netipv4tcp_tw_recycle = 1 表示开启TCP连接中TIME-WAIT sockets的快速回收,默认为0,表示关闭。
netipv4tcp_fin_timeout 修改系默认的 TIMEOUT 时间</pre>
然后执行 /sbin/sysctl -p 让参数生效
/etc/sysctlconf是一个允许改变正在运行中的Linux系统的接口,它包含一些TCP/IP堆栈和虚拟内存系统的高级选项,修改内核参数永久生效。
简单来说,就是打开系统的TIMEWAIT重用和快速回收。
本文主要讲述了socket的主要api,以及tcp的连接过程和其中各个阶段的连接状态,理解这些是更深入了解tcp的基础!
具体方法是打开gmsv文件夹,用笔记本打开setupcf,修改PLAYERNUM的值#自定义在线人虚假人数(虚假人数+在线人数+随机人数)
PLAYERNUM=10
以防万一我还修改了最大支持在线人数,我该成15
反正这样gmsvexe就不会闪退了
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)