1开车时,你说出地点,自动驾驶系统将你带到目的地;
2在医院,你看到来自美国的拖车机器人Tuggy McFresh在运送医疗器械和来自日本的“大白”机器人Robear在照顾病人;
3在酒店,2015年新上市的日本Henn-na服务生机器人包揽了从值守前台、运送行李到客房清扫等一众服务;
4下班后,你按下了“回家模式”,推开家门你发现,窗帘已经拉上,温度适宜,灯光柔和,热水烧好,还有日本软银公司的家居机器人Pepper跟你问好卖萌;
5在家里,你用iWatch打电话,使用的是可监控和改善睡眠品质的APP;
6其实,你还可以使用汪峰同款无人飞行器,载着钻戒,向你心爱的她求婚。
早在第一台计算机埃尼阿克问世后十年,就有科学家预言,人工智能时代将要来临。当“深蓝”赢了卡斯帕罗夫之后,这种美好的情景似乎更是指日可待。但是在整个 20世纪后半叶,人工智能研究却因为数次技术革新尝试的失败而停滞,经历了从上世纪50年代到本世纪初期的若干个寒冬期。最近的一个寒冬期,就是20世纪末到21世纪的头10年,也就是深蓝赢得比赛之后,因为神经网络的研究遭遇瓶颈而带来的寒冬。
然而在2014年,科技界和商界的所有人,都能明显的感觉到,人工智能的理论研究和可感知产品似乎突然“喷发”了:各种可穿戴设备扎堆出现,智能机器人频频亮相,机器的人脸识别准确率超过肉眼,Google、苹果和宝马等公司齐发力无人驾驶汽车,美国、欧洲先后设立人类大脑攻关项目……
AI2021和AI2022的区别如下:
自2018年以来连续第四年发布。
报告从宏观经济、技术成熟度、AI劳动供给、行业和地域四大方面进行综合考量,评估中国人工智能发展现状,为推动产业AI化发展提供参考和行动指南。
算力基础设施建设体现一个地区对人工智能的综合投入程度,首次被作为地域评估的考虑因素。
报告指出,AI芯片呈现多元化发展趋势,AI芯片算力持续提升满足模型规模增长态势;中国AI服务器市场快速增长,中国厂商领跑全球,2020年全球AI服务器厂商浪潮、DELL、HPE市场份额位列前三,未来AI服务器将朝着多元开放、绿色节能的方向发展。AI与云的融合是必然趋势,预计到2025年,中国人工智能服务器公有云的占比将超过50%,私有云、政务云、行业云等也在蓬勃发展,混合IT是企业首选。算法模型发展愈加复杂,巨量模型将是规模化创新的基础,“源10”等巨量模型的出现,让构建大模型、提升AI处理性能成为发展趋势;应用场景已经从碎片化过渡到深度融合的一体化,从单点应用场景转换为多元化的应用场景。相比2020年,人工智能在金融、制造、能源 、公共事业和交通等行业体现的推动作用尤为显著;以智算中心为代表的算力基础设施,通过提供公共的算力、数据及算法服务,让算力服务易用,解决算力服务的供给问题。
作为专业人士来说说我了解的“神龙服务器”有多厉害吧。
总体上来说,神龙给我的感觉就是计算届的一个异类,因为它一直在打破常规,不断更新我们的认知。
大家都知道,云计算能够将成千上万台计算机的算力聚合起来,相当于突破了计算机硬件资源的算力和物理堆砌芯片两大瓶颈。神龙的诞生,就是改变了用户在云上获取算力的方式,意味着用户可以直接在云上获取物理机的性能。
不仅如此,阿里云发布的基于神龙云服务器的SCC-GN6,还是业界首个公共云异构超算集群。这个产品同样打破了常规,突破了传统芯片性能的极限,直接推动GPU异构计算进入云超算时代。
通俗一点来说,就是有了基于神龙云服务器的SCC-GN6,就可以为人工智能场景提供高性能计算能力,无人驾驶、智能推荐、机器翻译等都可以从中受益。基于神龙云服务器的SCC-GN6的出现,还破解了目前单纯堆砌芯片得到的性能已经无法满足企业用户需求的困局。
例如,原本深度学习模型训练需要好几天的时间才能完成,如果在云上构建的异构计算集群,时间就会大大缩短。可以说,在云上构建异构超算集这已经成为企业进行大规模复杂计算任务的最佳选择。
总之,我认为神龙服务器一直在挑战算力的极限,是当下业内非常厉害的产品。
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)