刚做的系统 电驴连不上服务器了

刚做的系统 电驴连不上服务器了,第1张

涉及到一起音乐版权诉讼,德国政府已经把大家经常光顾的驴子的ds1-6服务器封了,驴子的命运前途未卜;
所以大家不要因为驴子连接不上判断为自己电脑的问题,能上网说明网络没有问题。
当然可以在服务器那一项,选择其它的可以用的服务器,至少有几个还是可以用的,虽然有时似乎不太稳定,前提是你用的不是verycd的版本(它好像没有)。继上周DonkeyServer文件清零后,从17日晚起 DonkeyServer 全部6台服务器已经无法正常连接。官方网站尚能正常访问,但并未给出任何说明。
随着德国音乐产业律师于星期五在法庭上获胜德国境内的eDonkey服务器随之关闭
汉堡当地的区法院要求eDonkey服务器所有人,暂时关闭服务器,知道查清楚各个文件的版权所属关系后再行决定
但是作为一个P2P服务提供者,该服务器拥有者也无法删除任何他人电脑上的文件这让该人士感到很尴尬,虽然他也很想和法院合作据当地称,德国将进一步加强对P2P网络的监控,以确保没有非法的内容在其之上传播
从上周开始 DonkeyServer已将最大文件数目设置为0
直接导致服务器整体近似于瘫痪 索引功能无法使用
从17日晚起 DonkeyServer 全部6台服务器已经无法正常连接
官方网站>原文:>首先,看一下使用范例:
Java代码
LoadingCache<Key,Graph> graphs =CacheBuildernewBuilder()
maximumSize(1000)
expireAfterWrite(10,TimeUnitMINUTES)
removalListener(MY_LISTENER)
build(
newCacheLoader<Key,Graph>(){
publicGraph load(Key key)throwsAnyException{
return createExpensiveGraph(key);
}
});
适用性
缓存在很多情况下都是非常有用的。比如,我们需要多次根据给定的输入获取值,而且该值计算或者获取的开销是非常昂贵的。
缓存和ConcurrentMap是非常相像的,但是它们也不完全一样。最根本的区别就是,ConcurrentMap会持有所有添加的对象,直到被显示的移除。而缓存为了限制其内存的使用,通常都会配置成可以自动的将对象移除。在某些情况下即使不自动移除对象也是非常有用的,如LoadingCache它会自动加载缓存对象。
一般,Guava缓存适用于以下几种情况:
你愿意花费一些内存来换取性能提升;
你预测到某些键会多次进行查询;
你的缓存数据不超过内存(Guava缓存是单个应用中的本地缓存。它不会将数据存储到文件中,或者外部服务器。如果不适合你,可以考虑一下 Memcached)。
如果你的需要符合上面所说的每一条,那么选择Guava缓存绝对没错。
使用CacheBuilder的构建模式可以获取一个Cache,如上面的范例所示。但是如何进行定制才是比较有趣的。
注意:如果你不需要缓存的这些特性,那么使用ConcurrentHashMap会有更好的内存效率,但是如果想基于旧有的ConcurrentMap复制实现Cache的一些特性,那么可能是非常困难或者根本不可能。
加载
对于缓存首先需要明确的是:有没有一个方法可以通过给定的键来计算/加载相应的值?如果有,那么可以使用CacheLoader。如果没有这样的方法,或者你想复写缓存的加载方式,但你仍想保留“get-if-absent-compute”语义,你可以在调用get方法时传入一个Callable实例,来达到目的。缓存的对象可以通过Cacheput直接插入,但是自动加载是首选,因为自动加载可以更加容易的判断所有缓存信息的一致性。
From a CacheLoader
LoadingCache 缓存是通过一个CacheLoader来构建缓存。创建一个CacheLoader仅需要实现V load(K key) throws Exception方法即可。下面的范例就是如何创建一个LoadingCache:
Java代码
LoadingCache<Key,Graph> graphs =CacheBuildernewBuilder()
maximumSize(1000)
build(
newCacheLoader<Key,Graph>(){
publicGraph load(Key key)throwsAnyException{
return createExpensiveGraph(key);
}
});

try{
return graphsget(key);
}catch(ExecutionException e){
thrownewOtherException(egetCause());
}
通过方法get(K)可以对LoadingCache进行查询。该方法要不返回已缓存的值,要不通过CacheLoader来自动加载相应的值到缓存中。这里需要注意的是:CacheLoader可能会抛出Exception,LoaderCacheget(K)则可能会抛出ExecutionException。假如你定义的CacheLoader没有声明检查型异常,那么可以通过调用getUnchecked(K)来获取缓存值;但是一旦当CacheLoader中声明了检查型异常,则不可以调用getUnchecked。
Java代码
LoadingCache<Key,Graph> graphs =CacheBuildernewBuilder()
expireAfterAccess(10,TimeUnitMINUTES)
build(
newCacheLoader<Key,Graph>(){
publicGraph load(Key key){// no checked exception
return createExpensiveGraph(key);
}
});

return graphsgetUnchecked(key);
批量查询可以使用getAll(Iterable< extends K>)方法。缺省,getAll方法将循环每一个键调用CacheLoaderload方法获取缓存值。当缓存对象的批量获取比单独获取更有效时,可以通过复写CacheLoaderloadAll方法实现缓存对象的加载。此时当调用getAll(Iterable)方法时性能也会提升。
需要注意的是CacheLoaderloadAll的实现可以为没有明确要求的键加载缓存值。比如,当为某组中的一些键进行计算时,loadAll方法则可能会同时加载组中其余键的值。
From a Callable
所有Guava缓存,不论是否会自动加载,都支持get(K, Callable(V))方法。当给定键的缓存值已存在时则直接返回,否则通过指定的Callable方法进行计算并将值存放到缓存中。直到加载完成时,相应的缓存才会被更改。该方法简单实现了"if cached, return; otherwise create, cache and return"语义。
Java代码
Cache<Key,Value> cache =CacheBuildernewBuilder()
maximumSize(1000)
build();// look Ma, no CacheLoader

try{
// If the key wasn't in the "easy to compute" group, we need to
// do things the hard way
cacheget(key,newCallable<Value>(){
@Override
publicValue call()throwsAnyException{
return doThingsTheHardWay(key);
}
});
}catch(ExecutionException e){
thrownewOtherException(egetCause());
}
直接插入
使用cacheput(key, value)方法可以将值直接插入到缓存中,但这将会覆盖缓存中已存在的值。通过使用CacheasMap()所导出的ConcurrentMap对象中的方法也可以对缓存进行修改。但是,请注意asMap中的任何方法都不能自动的将数据加载到缓存中。也就是说,asMap中的各方法是在缓存自动加载范围之外来运作。所以,当你使用CacheLoader或Callable来加载缓存时,应该优先使用Cacheget(K, Callable<V>),而不是CacheasMap()putIfAbsent。
缓存回收
残酷的现实是我们可以肯定的说我们没有足够的内存来缓存一切。你必须来决定:什么时候缓存值不再值得保留?Guava提供了三种基本的缓存回收策略:基于容量回收策略,基于时间回收策略,基于引用回收策略。
基于容量回收策略
使用CacheBuildermaximumSize(long)可以设置缓存的最大容量。缓存将会尝试回收最近没有使用,或者没有经常使用的缓存项。警告:缓存可能会在容量达到限制之前执行回收,通常是在缓存大小逼近限制大小时。
另外,如果不同的缓存项有不同的“权重”, 如,缓存项有不同的内存占用,此时你需要使用CacheBuilderweigher(Weigher)指定一个权重计算函数,并使用CacheBuildermaxmumWeight(long)设定总权重。和maximumSize同样需要注意的是缓存也是在逼近总权重的时候进行回收处理。此外,缓存项的权重是在创建时进行计算,此后不再改变。
Java代码
LoadingCache<Key,Graph> graphs =CacheBuildernewBuilder()
maximumWeight(100000)
weigher(
newWeigher<Key,Graph>(){
publicint weigh(Key k,Graph g){
return gvertices()size();
}
})
build(
newCacheLoader<Key,Graph>(){
publicGraph load(Key key){// no checked exception
return createExpensiveGraph(key);
}
});
基于时间回收策略
CacheBuilder为基于时间的回收提供了两种方式:
expireAfterAccess(long, TimeUnit) 当缓存项在指定的时间段内没有被读或写就会被回收。这种回收策略类似于基于容量回收策略;
expireAfterWrite(long, TimeUnit) 当缓存项在指定的时间段内没有更新就会被回收。如果我们认为缓存数据在一段时间后数据不再可用,那么可以使用该种策略。
就如下面的讨论,定时过期回收会在写的过程中周期执行,偶尔也会读的过程中执行。
测试定时回收
测试定时回收其实不需要那么痛苦的,我们不必非得花费2秒来测试一个2秒的过期。在构建缓存时使用Ticker接口,并通过CacheBuilderticker(Ticker)方法指定时间源,这样我们就不用傻乎乎等系统时钟慢慢的走了。
基于引用回收策略
通过键或缓存值的弱引用(weak references),或者缓存值的软引用(soft references),Guava可以将缓存设置为允许垃圾回收。
CacheBuilderweakKeys() 使用弱引用存储键。当没有(强或软)引用到该键时,相应的缓存项将可以被垃圾回收。由于垃圾回收是依赖==进行判断,因此这样会导致整个缓存也会使用==来比较键的相等性,而不是使用equals();
CacheBuilderweakValues() 使用弱引用存储缓存值。当没有(强或软)引用到该缓存项时,将可以被垃圾回收。由于垃圾回收是依赖==进行判断,因此这样会导致整个缓存也会使用==来比较缓存值的相等性,而不是使用equals();
CacheBuildersoftValues() 使用软引用存储缓存值。当响应需要时,软引用才会被垃圾回收通过最少使用原则回收掉。由于使用软引用造成性能上的影响,我们强烈建议使用可被预言的maximum cache size的策略来代替。同样使用softValues()缓存值的比较也是使用==,而不是equals()。
显示移除
在任何时候,你都可以可以通过下面的方法显式将无效的缓存移除,而不是被动等待被回收:
使用Cacheinvalidate(key)单个移除;
使用CacheinvalidteAll(keys)批量移除;
使用CacheinvalidateAll()移除全部。

首先,看一下使用范例:
Java代码
LoadingCache<Key,Graph> graphs =CacheBuildernewBuilder()
maximumSize(1000)
expireAfterWrite(10,TimeUnitMINUTES)
removalListener(MY_LISTENER)
build(
newCacheLoader<Key,Graph>(){
publicGraph load(Key key)throwsAnyException{
return createExpensiveGraph(key);
}
});
适用性
缓存在很多情况下都是非常有用的。比如,我们需要多次根据给定的输入获取值,而且该值计算或者获取的开销是非常昂贵的。
缓存和ConcurrentMap是非常相像的,但是它们也不完全一样。最根本的区别就是,ConcurrentMap会持有所有添加的对象,直到被显示的移除。而缓存为了限制其内存的使用,通常都会配置成可以自动的将对象移除。在某些情况下即使不自动移除对象也是非常有用的,如LoadingCache它会自动加载缓存对象。
一般,Guava缓存适用于以下几种情况:
你愿意花费一些内存来换取性能提升;
你预测到某些键会多次进行查询;
你的缓存数据不超过内存(Guava缓存是单个应用中的本地缓存。它不会将数据存储到文件中,或者外部服务器。如果不适合你,可以考虑一下 Memcached)。
如果你的需要符合上面所说的每一条,那么选择Guava缓存绝对没错。
使用CacheBuilder的构建模式可以获取一个Cache,如上面的范例所示。但是如何进行定制才是比较有趣的。
注意:如果你不需要缓存的这些特性,那么使用ConcurrentHashMap会有更好的内存效率,但是如果想基于旧有的ConcurrentMap复制实现Cache的一些特性,那么可能是非常困难或者根本不可能。
加载
对于缓存首先需要明确的是:有没有一个方法可以通过给定的键来计算/加载相应的值?如果有,那么可以使用CacheLoader。如果没有这样的方法,或者你想复写缓存的加载方式,但你仍想保留“get-if-absent-compute”语义,你可以在调用get方法时传入一个Callable实例,来达到目的。缓存的对象可以通过Cacheput直接插入,但是自动加载是首选,因为自动加载可以更加容易的判断所有缓存信息的一致性。
From a CacheLoader
LoadingCache 缓存是通过一个CacheLoader来构建缓存。创建一个CacheLoader仅需要实现V load(K key) throws Exception方法即可。下面的范例就是如何创建一个LoadingCache:
Java代码
LoadingCache<Key,Graph> graphs =CacheBuildernewBuilder()
maximumSize(1000)
build(
newCacheLoader<Key,Graph>(){
publicGraph load(Key key)throwsAnyException{
return createExpensiveGraph(key);
}
});

try{
return graphsget(key);
}catch(ExecutionException e){
thrownewOtherException(egetCause());
}
通过方法get(K)可以对LoadingCache进行查询。该方法要不返回已缓存的值,要不通过CacheLoader来自动加载相应的值到缓存中。这里需要注意的是:CacheLoader可能会抛出Exception,LoaderCacheget(K)则可能会抛出ExecutionException。假如你定义的CacheLoader没有声明检查型异常,那么可以通过调用getUnchecked(K)来获取缓存值;但是一旦当CacheLoader中声明了检查型异常,则不可以调用getUnchecked。
Java代码
LoadingCache<Key,Graph> graphs =CacheBuildernewBuilder()
expireAfterAccess(10,TimeUnitMINUTES)
build(
newCacheLoader<Key,Graph>(){
publicGraph load(Key key){// no checked exception
return createExpensiveGraph(key);
}
});

return graphsgetUnchecked(key);
批量查询可以使用getAll(Iterable< extends K>)方法。缺省,getAll方法将循环每一个键调用CacheLoaderload方法获取缓存值。当缓存对象的批量获取比单独获取更有效时,可以通过复写CacheLoaderloadAll方法实现缓存对象的加载。此时当调用getAll(Iterable)方法时性能也会提升。
需要注意的是CacheLoaderloadAll的实现可以为没有明确要求的键加载缓存值。比如,当为某组中的一些键进行计算时,loadAll方法则可能会同时加载组中其余键的值。
From a Callable
所有Guava缓存,不论是否会自动加载,都支持get(K, Callable(V))方法。当给定键的缓存值已存在时则直接返回,否则通过指定的Callable方法进行计算并将值存放到缓存中。直到加载完成时,相应的缓存才会被更改。该方法简单实现了"if cached, return; otherwise create, cache and return"语义。
Java代码
Cache<Key,Value> cache =CacheBuildernewBuilder()
maximumSize(1000)
build();// look Ma, no CacheLoader

try{
// If the key wasn't in the "easy to compute" group, we need to
// do things the hard way
cacheget(key,newCallable<Value>(){
@Override
publicValue call()throwsAnyException{
return doThingsTheHardWay(key);
}
});
}catch(ExecutionException e){
thrownewOtherException(egetCause());
}
直接插入
使用cacheput(key, value)方法可以将值直接插入到缓存中,但这将会覆盖缓存中已存在的值。通过使用CacheasMap()所导出的ConcurrentMap对象中的方法也可以对缓存进行修改。但是,请注意asMap中的任何方法都不能自动的将数据加载到缓存中。也就是说,asMap中的各方法是在缓存自动加载范围之外来运作。所以,当你使用CacheLoader或Callable来加载缓存时,应该优先使用Cacheget(K, Callable<V>),而不是CacheasMap()putIfAbsent。
缓存回收
残酷的现实是我们可以肯定的说我们没有足够的内存来缓存一切。你必须来决定:什么时候缓存值不再值得保留?Guava提供了三种基本的缓存回收策略:基于容量回收策略,基于时间回收策略,基于引用回收策略。
基于容量回收策略
使用CacheBuildermaximumSize(long)可以设置缓存的最大容量。缓存将会尝试回收最近没有使用,或者没有经常使用的缓存项。警告:缓存可能会在容量达到限制之前执行回收,通常是在缓存大小逼近限制大小时。
另外,如果不同的缓存项有不同的“权重”, 如,缓存项有不同的内存占用,此时你需要使用CacheBuilderweigher(Weigher)指定一个权重计算函数,并使用CacheBuildermaxmumWeight(long)设定总权重。和maximumSize同样需要注意的是缓存也是在逼近总权重的时候进行回收处理。此外,缓存项的权重是在创建时进行计算,此后不再改变。
Java代码
LoadingCache<Key,Graph> graphs =CacheBuildernewBuilder()
maximumWeight(100000)
weigher(
newWeigher<Key,Graph>(){
publicint weigh(Key k,Graph g){
return gvertices()size();
}
})
build(
newCacheLoader<Key,Graph>(){
publicGraph load(Key key){// no checked exception
return createExpensiveGraph(key);
}
});
基于时间回收策略
CacheBuilder为基于时间的回收提供了两种方式:
expireAfterAccess(long, TimeUnit) 当缓存项在指定的时间段内没有被读或写就会被回收。这种回收策略类似于基于容量回收策略;
expireAfterWrite(long, TimeUnit) 当缓存项在指定的时间段内没有更新就会被回收。如果我们认为缓存数据在一段时间后数据不再可用,那么可以使用该种策略。
就如下面的讨论,定时过期回收会在写的过程中周期执行,偶尔也会读的过程中执行。
测试定时回收
测试定时回收其实不需要那么痛苦的,我们不必非得花费2秒来测试一个2秒的过期。在构建缓存时使用Ticker接口,并通过CacheBuilderticker(Ticker)方法指定时间源,这样我们就不用傻乎乎等系统时钟慢慢的走了。
基于引用回收策略
通过键或缓存值的弱引用(weak references),或者缓存值的软引用(soft references),Guava可以将缓存设置为允许垃圾回收。
CacheBuilderweakKeys() 使用弱引用存储键。当没有(强或软)引用到该键时,相应的缓存项将可以被垃圾回收。由于垃圾回收是依赖==进行判断,因此这样会导致整个缓存也会使用==来比较键的相等性,而不是使用equals();
CacheBuilderweakValues() 使用弱引用存储缓存值。当没有(强或软)引用到该缓存项时,将可以被垃圾回收。由于垃圾回收是依赖==进行判断,因此这样会导致整个缓存也会使用==来比较缓存值的相等性,而不是使用equals();
CacheBuildersoftValues() 使用软引用存储缓存值。当响应需要时,软引用才会被垃圾回收通过最少使用原则回收掉。由于使用软引用造成性能上的影响,我们强烈建议使用可被预言的maximum cache size的策略来代替。同样使用softValues()缓存值的比较也是使用==,而不是equals()。
显示移除
在任何时候,你都可以可以通过下面的方法显式将无效的缓存移除,而不是被动等待被回收:
使用Cacheinvalidate(key)单个移除;
使用CacheinvalidteAll(keys)批量移除;
使用CacheinvalidateAll()移除全部。

将 Web 服务部署到 Web 服务器。有关更多信息,请参见 XML Web services 发布和部署。
访问 Web 浏览器,并使用以下格式在地址栏中输入 Web 服务的 URL:
>

欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/zz/10571281.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-05-09
下一篇 2023-05-09

发表评论

登录后才能评论

评论列表(0条)

保存