英伟达CPU问世:ARM架构,对比x86实现十倍性能提升

英伟达CPU问世:ARM架构,对比x86实现十倍性能提升,第1张

机器之心报道

机器之心编辑部

「只需一张 GeForce 显卡,每个学生都可以拥有一台超级计算机,这正是 Alex Krizhevsky、Ilya 和 Hinton 当年训练 AI 模型 AlexNet 的方式。通过搭载在超级计算机中的 GPU,我们现在能让科学家们在 youxian 的一生之中追逐无尽的科学事业,」英伟达创始人兼首席执行官黄仁勋说道。

4 月 12 日晚,英伟达 GTC 2021 大会在线上开始了。或许是因为长期远程办公不用出门,人们惊讶地看到在自家厨房讲 Keynote 的黄老板居然留了一头摇滚范的长发:

如果你只是对他的黑色皮衣印象深刻,先对比一下 2019、2020 和 2021 的 GTC,老黄气质越来越摇滚。如此气质,黄仁勋今天推出的新产品肯定将会与众不同。

「这是世界第一款为 terabyte 级别计算设计的 CPU,」在 GTC 大会上,黄仁勋祭出了英伟达的首款中央处理器 Grace,其面向超大型 AI 模型的和高性能计算。

英伟达也要做 CPU 了

Grace 使用相对能耗较低的 Arm 核心,但它又可以为训练超大 AI 模型的系统提供 10 倍左右的性能提升。英伟达表示,它是超过一万名工程人员历经几年的研发成果,旨在满足当前世界最先进应用程序的计算需求,其具备的计算性能和吞吐速率是以往任何架构所无法比拟的。

「结合 GPU 和 DPU,Grace 为我们提供了第三种基础计算能力,并具备重新定义数据中心架构,推进 AI 前进的能力,」黄仁勋说道。

Grace 的名字来自于计算机科学家、世界最早一批的程序员,也是最早的女性程序员之一的格蕾丝 · 赫柏(Grace Hopper)。她创造了现代第一个编译器 A-0 系统,以及第一个高级商用计算机程序语言「COBOL」。计算机术语「Debug」(调试)便是她在受到从电脑中驱除蛾子的启发而开始使用的,于是她也被冠以「Debug 之母」的称号。

英伟达的 Grace 芯片利用 Arm 架构的灵活性,是专为加速计算而设计的 CPU 和服务器架构,可用于训练具有超过 1 万亿参数的下一代深度学习预训练模型。在与英伟达的 GPU 结合使用时,整套系统可以提供相比当今基于 x86 CPU 的最新 NVIDIA DGX 快 10 倍的性能。

目前英伟达自家的 DGX,使用的是 AMD 7 纳米制程的 Rome 架构 CPU。

据介绍,Grace 采用了更为先进的 5nm 制程,在内部通信能力上,它使用了英伟达第四代 NVIDIA NVLink,在 CPU 和 GPU 之间提供高达 900 GB/s 的双向带宽,相比之前的产品提升了八倍。Grace 还是第一个通过错误校正代码(ECC)等机制利用 LPDDR5x 内存系统提供服务器级可靠性的 CPU,同时提供 2 倍的内存带宽和高达 10 倍的能源效率。在架构上,它使用下一代 Arm Neoverse 内核,以高能效的设计提供高性能。

基于这款 CPU 和仍未发布的下一代 GPU,瑞士国家超级计算中心、苏黎世联邦理工大学将构建一台名为「阿尔卑斯」的超级计算机,算力 20Exaflops(目前全球第一超算「富岳」的算力约为 0537Exaflops),将实现两天训练一次 GPT-3 模型的能力,比目前基于英伟达 GPU 打造的 Selene 超级计算机快 7 倍。

美国能源部下属的洛斯阿拉莫斯国家实验室也将在 2023 年推出一台基于 Grace 的超级计算机。

GPU+CPU+DPU,三管齐下

「简单说来,目前市场上每年交付的 3000 万台数据中心服务器中,有 1/3 用于运行软件定义的数据中心堆栈,其负载的增长速度远远快于摩尔定律。除非我们找到加速的办法,否则用于运行应用的算力将会越来越少,」黄仁勋说道。「新时代的计算机需要新的芯片、新的系统架构、新的网络、新的软件和工具。」

除了造 CPU 的大新闻以外,英伟达还在一个半小时的 Keynote 里陆续发布了大量重要软硬件产品,覆盖了 AI、 汽车 、机器人、5G、实时图形、云端协作和数据中心等领域的最新进展。英伟达的技术,为我们描绘出了一幅令人神往的未来愿景。

黄仁勋表示,英伟达全新的数据中心路线图已包括 CPU、GPU 和 DPU 三类芯片,而 Grace 和 BlueField 是其中必不可少的关键组成部分。投身 Arm 架构的 CPU,并不意味着英伟达会放弃原有的 x86、Power 等架构,黄仁勋将英伟达重新定义为「三芯片」公司,覆盖 CPU、GPU 和 DPU。

对于未来的发展节奏,黄仁勋表示:「我们的发展将覆盖三个产品线——CPU、GPU 和 DPU,以每两年一次更新的节奏进行,第一年更新 x86,第二年就更新 Arm。」

最后是自动驾驶。「对于 汽车 而言,更高的算力意味着更加智能化,开发者们也能让产品更快迭代。TOPS 就是新的马力,」黄仁勋说道。

英伟达将于 2022 年投产的 NVIDIA 自动驾驶 汽车 计算系统级芯片——NVIDIA DRIVE Orin,旨在成为覆盖自动驾驶和智能车机的 汽车 中央电脑。搭载 Orin 的量产车现在还没法买到,但英伟达已经在为下一代,超过 L5 驾驶能力的计算系统作出计划了。

Atlan 是这家公司为 汽车 行业设计的下一代 SoC,其将采用 Grace 下一代 CPU 和下一代安培架构 GPU,同时也集成数据处理单元 (DPU)。如此一来,Atlan 可以达到每秒超过 1000 万亿次(TOPS)运算次数。如果一切顺利的话,2025 年新生产的车型将会搭载 Atlan 芯片。

与此同时,英伟达还展示了 Hyperion 8 自动驾驶 汽车 平台,业内算力最强的自动驾驶 汽车 模板——搭载了 3 套 Orin 中心计算机。

不知这些更强的芯片和系统,能否应付未来几年里人们对于算力无穷无尽的需求。在 GTC 2021 上,英伟达对于深度学习模型的指数增长图又更新了。「三年间,大规模预训练模型的参数量增加了 3000 倍。我们估计在 2023 年会出现 100 万亿参数的模型。」黄仁勋说道。

英伟达今天发布的一系列产品,让这家公司在几乎所有行业和领域都能为你提供最强大的机器学习算力。在黄仁勋的 Keynote 发表时,这家公司的股票一度突破了 600 美元大关。

「20 年前,这一切都只是科幻小说的情节;10 年前,它们只是梦想;今天,我们正在实现这些愿景。

英伟达每年在 GTC 大会上发布的新产品,已经成为了行业发展的风向。不知在 Grace 推出之后,未来我们的服务器和电脑是否会快速进入 Arm 时代。



事后想来,芯片验证工程师Lynda觉得进腾讯有点“草率”了。


作为一个在半导体行业工作过多年的资深工程师,Lynda第一次看到腾讯发布芯片岗位需求时,略感到一丝惊讶。2019年1月她带着好奇加入这家互联网大厂,准备撸起袖子,大干一场。


面试时,主导芯片设计工作的Henry给她打过一剂预防针:“我们是从零开始做芯片。”Lynda试图代入鹅厂一贯的低调来理解这句话,但随即便在第一天上班时被跟同事的对话震到了:


-“我们的仿真工具呢?” -“没有,还在谈。”


-“验证环境怎么说?” -“还……没有。”


-“那……验证流程呢?-“这个……也没有。“


对于一个芯片验证工程师来说,仿真工具、验证环境、验证流程就是必备的生产力工具。Lynda想全程参与芯片研发业务,倒不怕从头开始,只不过没想到连这些必备品都能 “三无”。


当一家互联网公司投身半导体时,工具的欠缺还不是最紧要的。“造芯”不仅是业务的简单延伸,它往往意味着更复杂的产业链、更耗时的人才沉淀、以及更迥异的生态文化和技术理念。


比如芯片研发不像软件开发尚可后期不断改bug,设计问题没被前期验证发现,一旦流片就只能沦为一块“砖头”。而Lynda所担任的验证工程师,就是防止前期努力打水漂的守门员。


这个岗位的重要性不言而喻,设计工程师与验证工程师的比例在很多芯片公司会达到1:3。但Lynda入职后环顾四周,发现不仅自己只有一个并肩作战的同事,连验证的代码也一行都没有。


这时候,Lynda才开始明白Henry口中的“从零开始”意味着什么,以及她面临着怎样一场艰难的战役。



01

雄关如铁,出师未捷



在腾讯云副总裁、云架构平台部总经理谢明看来,“从零开始”的背后还有更多的曲折故事。


谢明所在的云架构平台部,站在腾讯各类前端应用的身后,是腾讯海量业务数据冲刷的前线,有效支撑了QQ、邮箱、微信、微云、流媒体视频等一个又一个的国民级应用。


2013年,QQ相册已经发展成腾讯最大的一个存储类业务。让用户访问相册的速度更快、体验更顺滑,成了一个很急迫的需求。转化成相应的技术问题,就是能否更快地转码?能否在不损画质的情况下压缩?能否以更低的成本存储?


他们反复地追问。


团队深刻地明白底层技术创新对上层应用的放大价值。软件架构上固然要永远不停歇地进行自我超越,但他们敏锐地察觉到,只有在硬件上也作出创新,才能实现更深层次的突破。


问题是:一个做软件出身的团队,怎么去做硬件?


一圈研究之后,他们决定先拿FPGA(可编程阵列逻辑)试水。跟我们平时电脑和手机里的通用芯片相比,FPGA是一种专用集成电路(ASIC),能够实现灵活的“半定制”开发。


FPGA相比起芯片容错率高,但在吞吐率、延迟、功耗和灵活性等维度上都很平衡。尤其是在处理海量数据时,FPGA相比GPU具有超低延时的显著优势,很适合用在特定的业务场景。


事实验证了这种判断。2015年,团队集中力量研发的编码FPGA,取得了比CPU编码和软件编码更高的压缩率和更低的延时,也帮助QQ相册很大程度上降低了存储成本。他们看到了在FPGA方向 探索 和深入的可能性。


2016年前后,由Alpha Go引爆的AI热潮更把FPGA拉入了主流视野。团队通过FPGA对深度学习模型的CNN算法进行加速后,处理性能达到通用CPU的4倍,而单位成本仅为1/3。


FPGA效果虽好,但技术门槛比较高,“如果把FPGA云化,是不是一个能够扩大应用的解决路径?”


带着这样的期待,2017年1月20日,腾讯云推出了国内首款FPGA云服务器,希望以云计算的方式,将FPGA能力推广到更多企业。


从效果上来说,在FPGA云服务器上进行FPGA硬件编程的企业,确实能将性能提升至通用CPU服务器的30倍以上,而只需支付相当于通用CPU约40%的费用。以一家著名的基因检测公司为例,传统用CPU需要检测一周的基因序列,FPGA可以压缩到数小时完成。


然而云化后的FPGA,没能如预期般迅速席卷整个行业。


一方面,FPGA毕竟是一种“半定制”的电路,许多企业还是无法独立胜任FPGA开发,需要更加上层的服务;另一方面,通用芯片成本的迅速下降,也让FPGA的性价比优势逐渐丧失。


云端商业化的受挫泼来一盆冷水,把团队的热情从巅峰一下子打到了谷底,同时也把两个问题赤裸裸地抛到整个团队的眼前:FPGA对业务的价值究竟有多大?FPGA还能继续做吗?


受此打击,团队在2018年也近乎分崩离析,人员开始集中式地离开。腾讯在“造芯”上的第一次 探索 ,画上了一个遗憾的逗号。



02

柳暗花明,“蓬莱”问世



在FPGA云服务器受挫后,腾讯需要重新思考硬件之路要怎么走下去。


在团队几乎解散的2018年,中国芯片行业迎来暖春:中美贸易摩擦给全民普及了芯片的重要性,科创板的设立为半导体企业上市开启大门,而国家资金的进场更是让大江南北一片热火朝天。


但是,对于互联网公司来说,做芯片跟做云计算、数据库、存储系统等一样,需要有具体的业务场景支撑,不能“为了做而做”。在经历过一场不算成功的 探索 后,腾讯要等待下一个真实需求带来的机会。


时间进入2019年。那是人工智能规模化应用的元年,内外部业务都提出了对AI芯片的强烈诉求。AI芯片,要不要做?


这个问题被提出来的时候,腾讯的管理层有过反对的声音,担心技术人员只是头脑发热,只是为了追逐热点。但同时,管理层也给了足够的灰度,没有明令禁止小团队级别的 探索 。


以小规模、低成本、特定应用场景的方式先行试水,成了大家的共识。


云架构平台部将第一款芯片敲定AI推理方向,取名“蓬莱”,希望这款芯片能像中国古代神话里的海外仙山一样,稳固地立于汹涌波涛之上。


这支硬件突围小分队,也被正式命名为“蓬莱实验室”。



有了FPGA 探索 时积攒的经验,蓬莱实验室对硬件编程语言已经相当熟练,也在标准接口、总线等方面积累了一些平台化的设计。然而,两者的研发要求,不可同日而语。


如果说做FPGA是搭现成的积木,那么做芯片就是直接从伐木开始来着手来制造积木。FPGA出了问题可以重新编程,而芯片只有一次流片机会,一旦出错,所有的努力便付诸东流。


此外, FPGA的资源是现成固定的,芯片的资源却是由自己定义的。一个字,就是要“抠”:用最小的资源做最大的事。


芯片架构工程师Rick用“装修”改“重建”来形容整个蓬莱项目。一开始,团队以为能把之前FPGA的技术较为简单地转成芯片。做着做着发现,以为终归只是以为——FPGA架构在芯片中能直接复用的并不多,团队只能把原来的架构整个拆掉,重写的代码量高达85%。


像DDR存储器这样的重中之重,芯片厂商通常会有专门的验证人员负责,而刚起步的蓬莱实验室没这个条件,只能靠抢时间把功课补回来。Lynda后来回忆道:“我恨不得一天有48个小时”。


2020年1月,蓬莱芯片流片完成,被合作方快递到深圳。新冠疫情刚刚在全国范围内暴发,公司已经开启集体远程办公。



项目负责人Henry戴着手套取到快递,用酒精仔细消毒后,带到空空荡荡的办公楼,大开着窗户和风扇,在一片消毒水味中,他和几个同事一起开始了至关重要的点亮 *** 作。


所谓点亮,就是给芯片上电,首先看有没有短路冒烟,接着就是测试一些基本功能。是芯片还是“砖头”,成败在此一举。



结果,芯片的时钟频率一直没出来。要知道,时钟频率是芯片的“节拍器”,没有时钟频率,芯片的不同模块等于没对好表,就无法协同工作。


是不是这块芯片的问题?实验人员换了一块芯片,依然没有信号输出。


再换一块,还是没有。现场鸦雀无声。


实验人员已经不敢动手了。有人忍不住开玩笑,是不是该回家改简历了。


但除了沮丧,大家心里更多的是疑惑。因为项目虽然人少、资源少,近乎是白手起家,但蓬莱团队从设计人员到验证人员都有信心说:每一步都做好了。到底是哪里不对呢?


在无比凝重的气氛中,他们继续放板、上电、读取信号……


第四块芯片,亮了。剩下的所有芯片,也都没问题。


真相其实很简单。28纳米工艺的芯片不良率只有3%,但偏偏随机测试的前三片都是坏片,小概率事件就恰好让他们全赶上了。这让他们把“生一胎”的紧张情绪,体验到十足。


在虚惊一场后的拍手相庆中,腾讯第一款芯片,宣告问世。



03

更上一层,“紫霄”凌云



量产后的蓬莱芯片,实战表现也不负众望,助力腾讯推出中国第一台获准进入医院临床应用的智能显微镜,实现自动识别医学图像、统计细胞数目并直接显示在视野上,性能表现完全符合设计要求。



这一扫当年FPGA云服务器项目的阴霾,说明在制造造出直面应用、性能卓越的芯片,这条路,腾讯走得通。


终端芯片蓬莱的问世,只是完成了从0到1的任务。团队已经迫不及待向要从1到N,向着大规模云端芯片进军。蓬莱实验室负责人Alex将大芯片申请立项戏称为“A轮融资”。


初试锋芒之后,团队需要向公司说明,为什么需要用更大的投入去做大规模芯片?在短期和长期能否保持领先性?如何与内外部业务结合创造价值?


腾讯这次面临的决策,要容易做得多。


首先是蓬莱实验室的成熟。通过一边行军一边成长,蓬莱实验室完成了一次次蜕变,建立起完整、严谨、规范的芯片研发体系和流程。这已经是一支具备硬核气场的“正规军”。


更重要的是,团队证明了腾讯做芯片的优势和站位。


谢明解释说,从行业来看,做芯片除了要考虑技术和工艺,最大的难点在于对芯片的“定义”。传统芯片厂商的优势在于前者,但芯片做出来之后再去匹配需求,在很多场景下真实性能是损失的。Google、腾讯这类 科技 企业的优势在于自身就是需求方,对需求的理解和洞察最深刻、最透彻。


方向没有问题,技术和工艺也没问题,腾讯高级执行副总裁、TEG(技术工程事业部)总裁卢山给予了全面支持,并通过总办争取到了更多的headcount和资金。


有了公司战略的支持,团队志气满满奔赴更大的战场。蓬莱实验室副总监Austin决定兵分两路,在AI推理和视频编解码上并行推进。


AI小分队继续做蓬莱的20版“紫霄”。这是《封神演义》里鸿钧老祖所居宫殿的名字。在稳固的仙山上牢筑“紫霄”,代表了新的野心:


这次,他们将目标直接定为业界第一。



紫霄所有的架构都围绕着有效算力去做。团队优化片上缓存设计,并摒弃竞品常用的GDDR6内存,采用先进的25D封装技术,把HBM2e内存与AI芯片合封在一起,从而把内存带宽提升了近40%。


技术迭代一日千里。紫霄立项后,业内最高性能表现又被竞品刷新。虽然紫霄的设计性能相比这个最高表现还足够“安全”,但团队还打算继续加码。


经过研究,他们在芯片内部增加了计算机视觉CV加速以及视频编解码加速,可创新性地大幅减小AI芯片和x86 CPU之间的交互和等待。


即便因此而增加了两个复杂的自研模块,团队仍然在计划的6个月时间里完成了从架构确定到验证以及流片的全部流程。


2021年9月10日,紫霄顺利点亮。



在和视频处理、自然语言处理、搜索推荐等应用场景下,这款芯片打破了制约算力发挥的瓶颈点,最终在实际业务场景性能表现达到了业界标品的2倍。



04

独立自研,“沧海”一笑


AI小分队给自己芯片取名“紫霄”,而视频编解码则取名“沧海”,颇有海天相接之意。


不同于蓬莱和紫霄主打AI,沧海是一款视频转码芯片。如果说当年QQ相册的转码问题是蓬莱团队做硬件的最早契机,那视频编解码小分队在这个方向上的继续 探索 ,正是完成了一次对初心的呼应。


不同的是,“沧海”的应用场景已经远超当年的范畴。


当多媒体业务从时代进化到音视频直播时代,天量的4K/8K超高清的数字内容如潮水一般持续冲击着云计算基础设施。每增加一个比特的数据,都会带来相应的转码算力和CDN带宽成本。


这是一道直观而严峻的数学题,而沧海小分队的解题目标也非常清晰,那就是要做一款业界最强的视频转码芯片,把压缩率发挥到极致。


好在,腾讯丰富的多媒体应用场景,以及腾讯云覆盖的众多直播互动头部客户,为沧海的研发提供了得天独厚的分析和验证条件。



团队先是推出了沧海的核心自研模块——硬件视频编码器“瑶池”,并决定在沧海完成研发之前给瑶池一次大考。


这个大考就是2020年的MSU世界编解码大赛,该大赛由莫斯科国立大学(MSU)主办,十多年来一直是全球视频压缩领域最具影响力的顶级赛事,吸引了包括英特尔、英伟达、谷歌、华为、阿里和腾讯在内的国内外知名 科技 企业参与。


结果是,瑶池实现1080P@60Hz的视频实时编码,力压群雄获得了SSIM (结构相似性)、PSNR(峰值信噪比)和VMAF(视频多方法评估融合)等各项客观指标评测第一名,以及人眼主观评价第一的好成绩,相比第二名领先了一个身位。


经此硬仗,沧海在技术上得到了充分检阅。


2022年3月5日,Derick和他带领的视频编解码小分队收到流片回来的芯片“沧海”,又正逢深圳因疫情而全面远程办公。


他们申请特批进入空空荡荡的办公楼。这情景,和两年前点亮蓬莱时何其相似。



不曾想到,点亮蓬莱时的一波三折,同样重现。克服了一些调试中的意外,在一片欢呼中,腾讯的第三款芯片、同时也是完全自主研发的第一款芯片沧海成功点亮。


化沧海为一粟。沧海最终实现以更小的数据量、更小的带宽提供相同质量的视频,压缩率相比行业最佳表现还提高了30%以上。


从蓬莱到紫霄再到沧海,从28纳米工艺到12纳米工艺,从8个人发展到100多人,从仿真工具一无所有到“天箭验证平台”正式落成,从努力跟上合作伙伴的节奏到独立做完全SOC。


两只小分队胜利会师。蓬莱团队,完成了一场“芯”路进化。



05

“100G”时代,双木参天



躬身跳进造芯大潮的,不是只有云架构平台部。


在多媒体、AI处理积极求变的同时,底层的云服务器也面临着相似的问题:当软件优化带来的性能提升无法让产品拥有区别于竞品的明显竞争力时,如何让性能突破现有天花板?


2019年,腾讯迎来云计算业务上的里程碑——云服务器规模突破了100万。腾讯云副总裁、腾讯网络平台部总经理邹贤能敏锐地观察到,随着服务器接入带宽不断提升,服务器用于网络处理的CPU资源也越来越多。


能否以更低成本的方式来实现服务器网络处理,同时还提供更高的网络性能?腾讯的网络平台部也将目光投向了软硬协同与硬件加速。


面对这样“既要、又要”的挑战,邹贤能决定给服务器做个减法:“把网络数据处理的负担从CPU卸载出来”。


“智能网卡”的想法就这样诞生了。


所谓智能网卡,一方面像普通网卡一样肩负起服务器的对外网络访问,实现不同服务器和数据中心之间的网络互联。另一方面,它额外带有CPU/FPGA/内存等智能单元,能分担一部分服务器的虚拟化计算任务,实现服务器整体网络和存储性能的加速。


换句话说,网络平台部要做的事,是要在网卡里新装一个服务器。



一开始,团队希望找到一款现成的商用板卡降低工作量。


网卡硬件负责人Hayden牵头开展方案论证和调研,但商用芯片的加速引擎不支持私有协议成为当时直面的第一大挑战,也是最大的障碍。一些著名的网卡设备商听了腾讯的要求就摇头:


“现在网卡的功能很简单,你们这个要求太复杂了,很难实现的。”


还有些直白地质疑:“网卡数量这么多,可靠性要求高,你们自己搞得定吗?”


难道智能网卡项目刚起步就要流产?


邹贤能给团队指明了方向:“既然智能网卡是云数据中心追求极致性能与成本的关键部件,如果市面上没有满足腾讯需求的产品,那我们就自己造一个。”


方向明确之后,路线也很快清晰起来:先从基于FPGA自研智能网卡起步,再开展智能网卡芯片研发。


2020年9月,腾讯第一代基于FPGA的自研智能网卡正式上线,命名为“水杉”,寄寓着团队希望产品可以像这种珍稀乔木一样适应性强、快速生长。


疫情期间各种突发需求砸来,初生的水杉没有被挑战压弯。


Hayden回忆道,一个大客户本身采用了UDP音视频协议,在属性上是“不可靠”、允许丢包的,极大地依赖网络吞吐和稳定性,却要求高并发、高质量的音视频传输效果。


水杉智能网卡迎难而上,通过大幅提升服务器的网络性能,帮助该客户完成了24小时零丢包的极限压力测试,稳定上线运行,交出了一份漂亮的答卷。


水杉投入应用后,第二代智能网卡“银杉”的研发工作也紧锣密鼓地启动,并于2021年10月正式上线。这一代智能网卡的网络端口翻了一番,达到了2100G。


在又一颗参天大树的支撑下,腾讯云对外推出了业界首款自研第六代100G云服务器。它的计算性能提升最大220%、存储性能最大提升100%。单节点接入网络带宽相比上一代最大提升4倍,延时下降50%。



“两棵树”在网络硬件卸载上取得的巨大收益,令团队兴奋不已。


当FPGA路线逐渐逼近性能和功耗的瓶颈,网络平台部决定再一次把主动权掌握在自己手里。腾讯的第四款芯片,也是首款智能网卡芯片应运而生,它也有一个 “仙气十足”的名字——“玄灵”。



06

“玄灵”乍现,芯事未完



按照计划,这款7纳米工艺的芯片将在2022年底流片。


Hayden受命快速组建起了玄灵芯片研发团队,不断挑战多个“mission impossible”。


从性能指标来看,玄灵支持设备数量将提升到10K以上,相对商业芯片提升6倍。同时,它的性能相对商业芯片也可提升4倍,通过将原来运行在主机CPU上的虚拟化、网络/存储IO等功能卸载到芯片,可实现主机CPU的0占用。


这颗短小精悍的芯片,充分诠释了面向未来极致性能的“玄”,与面向各类业务需求灵活加速的“灵”。


目前,玄灵项目正在紧锣密鼓地进行智能网卡流片前的验证和测试,打造腾讯云下一代高性能网络基础设施;


蓬莱实验室的AI推理芯片紫霄和视频转码芯片沧海则将量产,与腾讯业务深度融合应用;


还有一些新的芯片项目也在酝酿成长,继续 探索 有需要的技术方向,丰富这一本“山海经”。


腾讯海量业务面临的全新挑战,以及云计算高速发展的必然要求,“倒逼”腾讯走上了这条造芯之路。这些从业务需求出发的芯片,必定会深入现实应用来证明自身的价值。


“我们不是无中生有、拍脑袋要去做芯片。我们一开始就知道,腾讯的需求足够大,足够我们去做这件事。”卢山说道。


从2010年起,腾讯就开始以云服务的方式对外开放自身的数字技术与连接能力,奔赴这场产业数字化转型升级的时代大潮。躬身入局,腾讯看到深度的数实融合正在引领全真互联的技术趋势。


而在腾讯之外,中国的 科技 公司们正在向创新的深水区挺进,突破瓶颈的努力显得愈发重要。无论是数实融合还是上游创新,硬 科技 的海面上一片百舸争流,它们都在 历史 的浪潮奋楫中流。


在这场大潮中置身事内,腾讯的芯事必然在星辰大海中得到回响。



欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/zz/10573782.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-05-09
下一篇 2023-05-09

发表评论

登录后才能评论

评论列表(0条)

保存