def selectionSort_v3(lst, start, end):
if start==end: return lst
else:
min_value=lst[start]
min_idx=start
for i in range(start,end):
if lst[i]<min_value:
min_value=lst[i]
min_idx=i
lst[start],lst[min_idx]= lst[min_idx],lst[start] #交换值
return selectionSort_v3(lst,start+1,end)
lst=[2,1,4,5,6,8,9,0,7]
print(lst)
lst=selectionSort_v3(lst, 0,len(lst))
print(lst)
===========
显示
[2, 1, 4, 5, 6, 8, 9, 0, 7]
[0, 1, 2, 4, 5, 6, 7, 8, 9]
Python代码可以使用日志功能进行测试,可以使用Python内部设置的日志模块。日志模块提供丰富的功能,可以记录代码的运行状态和错误消息,方便开发者定位和解决问题。下面是一个简单的例子:
import logging
# 设置日志级别
loggingbasicConfig(level=loggingDEBUG)
def add_numbers(a, b):
loggingdebug("Adding {} and {}"format(a, b))
return a + b
result = add_numbers(2, 3)
loggingdebug("Result is {}"format(result))
在上面的代码中,我们通过调用loggingbasicConfig()方法设置了日志级别为DEBUG,然后在add_numbers()中使用loggingdebug()方法记录了计算过程序,最后在主程序中记录了结果。
使用日志功能可以大大简化测试过程,使用开发者更容易找到代码中的问题。
导读相信各位Python工程师们在写Python代码的时候,免不了经常会出现bug满天飞这种情况,这个时候我们可能就得一个标点一个标点的去排查,费时又费力,但是,我们又很难发现到底是其中的哪一个步骤,导致了这些问题的出现。导致这些问题的其中一个原因,就是我们没有养成良好的编程习惯。编程习惯就好比是**中的特效。**特效越好,呈现出来的观影效果也自然越好。同样,如果我们能够养成好的编程习惯,在查找错误的时候,自己的思路就会更加清晰。下面是小编整理的解决Python项目bug的心得技巧分享,包含六小点,希望对大家有所帮助。
方法一:使用项目管理工具
无论Python项目简单与否,我们都应该使用Git进行版本控制。大部分支持Python的IDE(集成开发环境)都内置了对Git这一类项目管理工具的支持。
我们在修改代码时,常常会出现改着改着程序就崩了的情况,改出的最新版本有时候还不如上一个版本。而Git,恰好能够及时帮我们保存之前的版本。使用了它以后,我们也不需要不停地用“ctrl+z”来撤回代码了。
方法二:使用Python的内置函数
Python的内置函数和标准库都可以处理常见的用例,而不需要自己重新定义函数。
但是,刚刚入门的Python开发人员们对其中的函数并不熟悉。所以他们经常会遇到这样一个问题——在不需要记住内容的情况下,如何才能知道标准库中的内容是否涵盖了自己的用例最简单的方法是将标准库索引和内置函数概述页添加为书签,并且在遇到“日常编程”类问题的时候立即浏览一下。我们使用这些函数的频率高了,自然也就能记住这些函数了。
方法三:使用正确的模块
与内置函数和标准库一样,Python中大量的第三方模块集合,也可以帮助我们节省大量的人力。通过PyPI的Web前端,可以针对我们的问题触发搜索词,我们很容易就能找到适合自己的解决方案。
方法四:使用OOP
面向对象编程(OOP)将数据结构与用于 *** 作它们的方法捆绑在一起,从而使编写高级代码更加容易。OOP非常适合用于Python这一类高级语言,尤其是项目非常复杂的时候。熟悉Python的开发人员都知道,使用OOP可以减少代码量,从而节省大量的时间。
但是,也不是所有的项目都需要使用OOP。如果项目没有特别要求,一些小型的项目就可以不用OOP。
方法五:编写测试代码并不断测试
一个好的程序员一定知道测试之于项目的重要性。编写测试代码的确是一个很枯燥的过程,但是不进行测试,我们就无法发现程序的问题所在。
如果一个项目非常复杂的话,我们就必须要做到及时测试。越早测试,就能越早发现问题。而不是说等代码全部写完了,才开始进行测试,这样反而会导致更多的错误和更大的工作量。
当然,我们也可以寻找专业的软件测试人员,来帮助我们进行测试。这样我们也可以把更多的精力投入到项目程序本身。
方法六:选择正确的Python版本
部分人仍然在使用Python2,但Python官方的开发团队早已经不对这一版本进行维护了。聪明的开发人员都已经将Python2里的项目迁移到Python3中了。
Python目前的最新版本是Python385,但也不是说你一定要使用最新版本。专业的软件开发人员都知道,任何软件的最新版本都不一定是最好的,因为它仍需要开发团队不断地去改良。程序员一般都会使用在最新版本之前的一个版本,旧版本相对而言是比较成熟的。
无论是运用哪一种语言编写代码,优秀的程序员都具备良好的编程习惯。这些习惯不仅能够让我们思路更加清晰,也可以帮助我们减轻工作量,从而节省大量的时间。所以,可能你离优秀的程序员,只差一个好习惯了哦~
以上就是小编今天给大家整理发送的关于“解决Python项目BUG的心得技巧分享”的相关内容,希望对大家有所帮助。小编认为要想在大数据行业有所建树,需要考取部分含金量高的数据分析师证书,这样更有核心竞争力与竞争资本。
以上就是关于请python大神帮忙调试一下程序全部的内容,包括:请python大神帮忙调试一下程序、PYTHON代码可以使用《+》《+》好日志功能等进行调试、python调试程序BUG的心得技巧分享等相关内容解答,如果想了解更多相关内容,可以关注我们,你们的支持是我们更新的动力!
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)