如何打开显卡的openGL选项

如何打开显卡的openGL选项,第1张

只需要安装显卡厂商提供的驱动即可,默认情况下,WINDOWS自带驱动是没有OPENGL的。

详细解释:

OpenGL(全写Open Graphics Library)是指定义了一个跨编程语言、跨平台的编程接口规格的专业的图形程序接口。它用于三维图像(二维的亦可),是一个功能强大,调用方便的底层图形库。

OpenGL™ 是行业领域中最为广泛接纳的 2D/3D 图形 API,其自诞生至今已催生了各种计算机平台及设备上的数千优秀应用程序。OpenGL™ 是独立于视窗 *** 作系统或其它 *** 作系统的,亦是网络透明的。在包含CAD、内容创作、能源、娱乐、游戏开发、制造业、制药业及虚拟现实等行业领域中,OpenGL™ 帮助程序员实现在 PC、工作站、超级计算机等硬件设备上的高性能、极具冲击力的高视觉表现力图形处理软件的开发。

是两个不同的库,OpenCV是一个基于(开源)发行的跨平台计算机视觉库,OpenGL(全写OpenGraphicsLibrary)是个定义了一个跨编程语言、跨平台的编程接口规格的专业的图形程序接口。

改变图形:你可以在右边做radio button,根据不同的选择渲染不同的图像

改变图形的位置,大小:可以改变视点的位置

我毕业设计做纹理映射,画了各种图形,随意变大小位置,可像我要代码

#include <windowsh>

#include <gl/gluth>

#include<gl/glh>

#include<gl/gluh>

// 函数RenderScene用于在窗口中绘制需要的图形

void RenderScene(void)

{

//用当前清除色清除颜色缓冲区,即设定窗口的背景色

glClear(GL_COLOR_BUFFER_BIT);

//设置当前绘图使用的RGB颜色

glColor3f(10f, 00f, 00f);

//使用当前颜色绘制一个填充的矩形

glRectf(1000f, 1500f, 1500f, 1000f);

//刷新OpenGL命令队列

glFlush();

}

// 函数ChangeSize是窗口大小改变时调用的登记函数

void ChangeSize(GLsizei w, GLsizei h)

{

if(h == 0) h = 1;

//设置视区尺寸

glViewport(0, 0, w, h);

// 重置坐标统,使投影变换复位

glMatrixMode(GL_PROJECTION);

glLoadIdentity();

// 建立修剪空间的范围

if (w <= h)

glOrtho (00f, 2500f, 00f, 2500fh/w, 10f, -10f);

else

glOrtho (00f, 2500fw/h, 00f, 2500f, 10f, -10f);

glMatrixMode(GL_MODELVIEW);

glLoadIdentity();

}

//函数SetupRC用于初始化,常用来设置场景渲染状态

void SetupRC(void)

{

// 设置窗口的清除色为白色

glClearColor(10f, 10f, 10f, 10f);

}

void main(void)

{

//初始化GLUT库OpenGL窗口的显示模式

glutInitDisplayMode(GLUT_SINGLE | GLUT_RGB);

// 创建一个名为GLRect的窗口

glutCreateWindow("GLRect");

// 设置当前窗口的显示回调函数和窗口再整形回调函数

glutDisplayFunc(RenderScene);

glutReshapeFunc(ChangeSize);

SetupRC();

//启动主GLUT事件处理循环

glutMainLoop();

}

171 库和头文件 程序GLRect中包含了4个头文件,其中定义了程序所用的函数原形。此外,OpenGL需要下列lib包含在你的工程中:opengllib,glulib,glut32lib;另外在运行程序路径下或\win98\system\(\winNT\system32)下需要一些动态连接库:opengl32dll,glu32dll,glut32dll。

172 函数主体

我们先看所有C程序的入口点:

void main(void)

{

1 显示模式

第一行代码如下:

glutInitDisplayMode(GLUT_SINGLE | GLUT_RGB);

它告诉GLUT库在创建窗口时使用单缓冲区窗口(GLUT_SINGLE)并使用RGB颜色模式(GLUT_RGB)。由于在屏幕上显示图形是由像素构成的,而像素的颜色及灰度信息都是存储在帧缓冲存储区中,单缓冲区窗口使用单一的帧缓冲存储区,这样所有的绘图命令都在显示窗口中执行;另一种是双缓冲区窗口(GLUT_DOUBLE),它使用了两个帧缓冲存储区,这样在窗口中执行的绘图命令实际上利用其中一个帧缓冲存储区创建一个场景,然后很快地交换到窗口视图中来,这种方法常用于产生动画效果的场合。RGB颜色模式意味着要通过分别提供红、绿、蓝成分的浓度来指定颜色。

2 创建OpenGL窗口

下一行代码:

glutCreateWindow("GLRect");

它利用glut库中的窗口管理函数在屏幕上创建一个标题为“GLRect”的窗口。

3 回调函数

后面的两行代码

glutDisplayFunc(RenderScene);

glutReshapeFunc(ChangeSize);

分别用于指定当前窗口的显示回调函数和再整形回调函数。回调函数是响应某种事件而被调用的函数,他由程序员编制,通过GLUT注册函数连接到特定的函数。这样只要需要绘制窗口,GLUT就会调用函数RenderScene;而当窗口的大小或形状发生变化时,GLUT会调用函数ChangeSize。

4.设置上下文并执行

SetupRC()函数与GLUT框架无关,其作用是进行OpenGL的初始化。OpenGL的初始化必须在渲染之前进行,由于OpenGL使用状态机,即每条OpenGL命令都使用当前的渲染状态完成,而对当前渲染状态的任何修改都会影响到之后的任何OpenGL命令,直至再次修改当前渲染状态,故此在一个场景中,许多的状态只要设置一次就可以了。

程序的结尾是最后一个GLUT函数调用:

glutMainLoop( );

}

该函数让GLUT框架开始运行,所有设置的回调函数开始工作,直到用户终止程序为止。

建议去看OpenGL红宝书咯,里面有例子的。

不过多说一句,OpenGL的前景是OpenGLES,在Android平台上流行很广。而OpenGLES中,是把拾取这个鸡肋的功能删除掉了的。所以,去学习拾取这个功能,性价比不高哦。

简单的说OpenGL是个3D标准

OpenGL是Open Graphics Library(开放性图形库)的缩写,是一套三维图形处理库,也是该领域的工业标准。计算机三维图形是指将用数据描述的三维空间通过计算转换成二维图像并显示或打印出来的技术。

OpenGL就是支持这种转换的程序库,它源于SGI公司为其图形工作站开发的IRIS GL,在跨平台移植过程中发展成为OpenGL。SGI在1992年7月发布10版,后成为工业标准,由成立于1992年的独立财团OpenGL Architecture Review Board (ARB)控制。SGI等ARB成员以投票方式产生标准,并制成规范文档(Specification)公布,各软硬件厂商据此开发自己系统上的实现。只有通过了ARB规范全部测试的实现才能称为OpenGL。1995年12月ARB批准了11版本,最新版规范是19995通过的121。

OpenGL被设计成独立于硬件,独立于窗口系统的,在运行各种 *** 作系统的各种计算机上都可用,并能在网络环境下以客户/服务器模式工作,是专业图形处理、科学计算等高端应用领域的标准图形库。它低端应用上的主要竞争对手是MS-Direct3D,该图形库是以COM接口形式提供的,所以极为较复杂,稳定性差,另外微软公司拥有该库版权,目前只在Windows平台上可用。D3D的优势在速度上,但现在低价显卡都能提供很好的OpenGL硬件加速,所以做3D使用Direct3D已没有特别的必要,在专业图形处理特别是高端应用方面目前还没有出现以Direct3D技术为基础的例子,而游戏等低端应用也有转向OpenGL的趋势。

微软在Windows NT对OpenGL的支持始于351,在Windows9x中的支持始于Win95 OEM Service Release 2。Windows下常用的OpenGL库有两种,MS实现的和SGI实现的,MS-OpenGL调用会自动检测是否存在显示卡制造商提供的ICD(Installable Client DeviceDriver)驱动程序,有则调用ICD中的例程,否则才用CPU进行计算,所以能利用显示卡的OpenGL加速能力。对开发者来说使用方法并没有区别,只是有ICD驱动时更快些。SGI的版本是纯软件实现不能利用硬件加速并且SGI已经在1999年宣布停止支持,但这套库便于调试程序,仍有不少开发者使用。

SGI曾经宣布研发OpenGL++,该图形库最大的特点是面象对象,提供了树形场景支持,大大减省了使用OpenGL处理复杂场景的工作量。后来(1999)SGI宣布与M$合作开发Ferihant,即Windows的下一代图形处理体系,包括DirectX与OpenGL的低级图形处理接口和以场景图支持为特点的高级接口,并且就此停止对其在Windows下的OpenGL实现的支持以示决心。此举世瞩目,大家都以为Windows图形处理快要过上幸福生活了,然而,不久,SGI宣布中止合作,并撤回派出的科学家,Ferihant基本上夭折。SGI 称终止合作的原因是M$不肯积极合作,光想把SGI 的技术合并进DirectX,真正内幕不详。不过以SGI在图形处理界的老大地位来说,还是有几分可信度的,因为M$初支持OpenGL就不积极。

OpenGL的特点

1硬件无关的软件接口

可以在不同的平台如Windows 95、Windows NT、Unix、Linux、MacOS、OS/2之间进行移植。因此,支持OpenGL的软件具有很好的移植性,可以获得非常广泛的应用。

2可以在客户机/服务器系统中工作,即具有网络功能

这一点对于制作大型3D图形、动画非常有用。例如,《玩具总动员》、《泰坦尼克号》等**的电脑特技画面就是通过应用OpenGL的网络功能,使120多台图形工作站共同工作来完成的。

由于OpenGL是与硬件无关的3D图形接口,在 Windows、Unix/X-Windows、 MacOS、OS/2等不同版本的窗口相关部分(系统相关)略有差异。由于OpenGL是3D图形的底层图形库,没有提供几何实体图元,不能直接用以描述场景。但是,通过一些转换程序,可以很方便地将AutoCAD、3DS等3D图形设计软件制作的DFX和3DS模型文件转换成OpenGL的顶点数组。

另外,在OpenGL的基础上还有Open Inventor、Cosmo3D、Optimizer等多种高级图形库,适应不同应用。其中,Open Inventor应用最为广泛。该软件是基于OpenGL面向对象的工具包,提供创建交互式3D图形应用程序的对象和方法,提供了预定义的对象和用于交互的事件处理模块,创建和编辑3D场景的高级应用程序单元,有打印对象和用其它图形格式交换数据的能力。

从上篇的叙述中,我们可以详细地了解到,OpenGL很早就是一个专业的3D图形API,只不过它更多的应用于专业设计领域,如CAD和虚拟现实等。但是,OpenGL的发展之路却颇为不顺。由于和微软分道扬镳,在发展中缺乏微软的支持,同时OpenGL的发展却由几个厂商共同把持,这些厂商为了各自的利益(包括知识产权和竞争的关系)均不愿为OpenGL的发展提供技术,因而OpenGL的发展慢了下来。

目前,随着DirectX的不断发展和完善,OpenGL的优势逐渐丧失,至今虽然已有3Dlabs提倡开发的20版本面世,在其中加入了很多类似于DirectX中可编程单元的设计,但推广却颇为坚难。由于微软已经退出了OpenGL,因此未来微软也不会再将DirectX中的新技术授给OpenGL,因此未来的OpenGL发展前景比较迷茫,如何发展只有待时间来验证。

简单来说就是实现图形的底层渲染

A 比如在游戏开发中,对于游戏场景/游戏人物的渲染

B 比如在音视频开发中,对于视频解码后的数据渲染

C 比如在地图引擎,对于地图上的数据渲染

D 比如在动画中,实现动画的绘制

E 比如在视频处理中,对于视频加上滤镜效果

OpenGL/OpenGL ES/Metal 在任何项目中解决问题的本质就是利用 GPU 芯片来高效渲染图形图像。

图形 API ios 开发者唯一接近 GPU 的方式。

OpenGL 阶段:

OpenGL ES 阶段:

Metal 阶段:

固定管线/存储着⾊器

顶点数据是由CPU/GPU来处理?

顶点缓存区:区域(不在内存!->显卡显存中。)

片元着色器

像素着色器

片元函数

GPUImage

[-1,1]标准化设备坐标系(NDC)

物体/世界/照相机空间->右手系

规范化设备坐标:左手系。

x,y,z => 0,1,2

注意OpenGL中坐标系 OpenGL中的物体,世界,照相机坐标系都属于右手坐标系,而规范化设备坐标系(NDC)属于左手坐标系。笼统的说OpenGL使用右手坐标系是不合适的

OpenGL希望每次顶点着色后,我们的可见顶点都为标准化设备坐标系 (Normalized Device Coordinate, NDC)。也就是说每个顶点的x,y,z都应该在-1到1之间,超出这个范围的顶点将是不可见的。

通常情况下我们会自己设定一个坐标系范围,之后再在顶点着色器中将这些坐标系变换为标准化设备坐标,然后这些标准化设备坐标传入光栅器(Rasterizer),将他们变换为屏幕上的二维坐标和像素。

将坐标变换为标准化设备坐标,接着再转化为屏幕坐标的过程通常是分布进行的,也是类似于流水线那样。在流水线中,物体的顶点在最终转化为屏幕坐标之前还会被变换到多个坐标系系统(Coordinate System)。将物体的坐标变到几个过渡坐标系(Intermediate Coordinate System)的优点在于 在这些特定的坐标系统中,一些 *** 作或运算更加方便和容易,这一点很快就变得明显。对我们来说比较重要的总共有5个不同的坐标系统。

这是一个顶点在最终被转化为片段之前需要经历的所有不同的状态。为了将坐标从一个坐标系变换到另一个坐标系,我们需要用到几个变换矩阵,最重要的几个分别是 模型(Model)、观察(View)、投影(Projection)三个矩阵。

物体顶点的起始坐标在局部空间(Local Space),这里称为局部坐标(Local Coordinate),他在之后在变成世界坐标(World Coordinate),观察坐标(View Coordinate),裁剪坐标(Clip Coordinate),并最后转为屏幕坐标(Screen Coordinate)

的形式结束。

物体坐标系: 每个物体都有他独立的坐标系,当物理移动或者改变方向时。该物体相关联的坐标系将随之移动或改变方向。

物体坐标系是以物体本身而言,比如,我先向你发指令,”向前走一步“,是向你的物体坐标系发指令。我并不知道你会往哪个绝对的方向移动。比如说,当你开车的时候,有人会说向左转,有人会说向东。但是,向左转是物体坐标系的概念,而向东则是世界坐标系概念。

在某种情况下,我们可以理解物体坐标系为模型坐标系。因为模型顶点的坐标都是在模型坐标系中描述的。

照相机坐标系: 照相机坐标系是和观察者密切相关的坐标系。照相机坐标系和屏幕坐标系相似,差别在于照相机坐标系处于3D空间中,而屏幕坐标系在2D平面里。

为什么要引入惯性坐标系 因为物体坐标系转换到惯性坐标系只需要旋转,从惯性坐标系转换到世界坐标系只需要平移。

OpenGL最终的渲染设备是2D的,我们需要将3D表示的场景转换为最终的2D形式,前面使用模型变换和视觉变换将物体坐标转到照相机坐标系后,需要进行投影变换,将坐标从照相机坐标系转换为裁剪坐标系,经过透视除法后,变换到规范化设备坐标系(NDC),最后进行视口变换后,3D坐标才变换到屏幕上的2D坐标,这个过程入下图:

在上面的图中, 注意,OpenGL只定义了裁剪坐标系、规范化设备坐标系、屏幕坐标系,而局部坐标系、世界坐标系、照相机坐标系都是为了方便用户设计而自定义的坐标系,他们的关系如下图:

OpenGL 然后对裁剪坐标执行透视除法从而将他们变换到标准化设备坐标。 OpenGL 会使用glViewPort内部的参数来将标准化设备坐标映射到屏幕坐标,每个坐标关联一个屏幕上的点。这个过程称为视口变换

局部坐标系(模型坐标系)是为了方便构造模型而设立的坐标系,建立模型时我们无需关心最终对象显示在屏幕那个位置。

模型变换的主要目的是通过变换使得用顶点属性定义或者3d建模软件构造的模型,能够按照需要,通过缩小、平移等 *** 作放置到场景中合适的位置, 通过模型变换后,物体放置在一个全局的世界坐标系中,世界坐标系是所有物体交互的一个公共坐标系

视变换是为了方便观察场景中物体而建立的坐标系,在这个坐标系中相机是个假设的概念,是为了便于计算而引入的。相机坐标系中的坐标,就是从相机的角度来解释世界坐标系中的位置

OpenGL中相机始终位于原点,指向 -Z轴,而以相反的方式来调整场景中物体,从而达到相同的观察效果。例如要观察-Z轴方向的一个立方体的右侧面,可以有两种方式:

GLShaderManager的初始化

GLShaderManager shaderManager;

shaderManagerInitializeStockShaders();

以上就是关于如何打开显卡的openGL选项全部的内容,包括:如何打开显卡的openGL选项、我想学习opengl,需要什么基础_OpenGL入门、VC++6.0环境下,opengl对话框程序如何实现绘图区图形的可编辑等相关内容解答,如果想了解更多相关内容,可以关注我们,你们的支持是我们更新的动力!

欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/zz/10634698.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-05-10
下一篇 2023-05-10

发表评论

登录后才能评论

评论列表(0条)

保存