AMD对于需要高性能计算和 IT 基础设施的企业用户来说, AMD 提供一系列解决方案。 o 1981年,AMD 287 FPU ,使用Intel 80287核心。产品的市场定位和性能与Intel 80287基本相同。也是迄今为止AMD公司 唯一生产过的FPU产品,十分稀有。 o AMD 8080(1974年)、8085(1976年)、8086(1978年)、8088(1979年)、80186(1982年)、80188、80286微
处理器,使用Intel 8080核心。产品的市场定位和性能与Intel同名产品基本相同。 o AMD 386(1991年)微处理器,核心代号P9,有SX和DX之分,分别与Intel 80386SX和DX相兼容的微处理器。AMD 386DX与Intel 386DX同为32位处理器。不同的是AMD 386SX是一个完全的16位处理器,而Intel 386SX是一种准32位处理器----内部总线32位,外部16位。AMD 386DX的性能与Intel 80386DX相差无己,同为当时的主流产品之一。AMD也曾研发了386 DE等多种型号基于386核心的嵌入式产品。 o AMD 486DX(1993年)微处理器,核心代号P4,AMD自行设计生产的第一代486产品。而后陆续推出了其他486级别的产品,常见的型号有:486DX2,核心代号P24;486DX4,核心代号P24C;486SX2,核心代号P23等。其它衍生型号还有486DE、486DXL2等,比较少见。AMD 486的最高频率为120MHz(DX4-120),这是第一次在频率上超越了强大的竞争对手Intel。 o AMD 5X86(1995年)微处理器,核心代号X5,AMD公司在486市场的利器。486时代的后期,TI(德州仪器)推出了高性价比的TI486DX2-80,很快占领了中低端市场,Intel也推出了高端的Pentium系列。AMD为了抢占市场的空缺,便推出了5x86系列CPU(几乎是与Cyrix 5x86同时推出)。它是486级最高频的产品----334、133MHz,035微米制造工艺,内置16KB一级回写
缓存,性能直指Pentium75,并且功耗要小于Pentium。 o AMD K5(1997年)微处理器,1997年发布。因为研发问题,其上市时间比竞争对手Intel的"经典奔腾"晚了许多,再加上性能并不十分出色,这个不成功的产品一度使得AMD的市场份额大量丧失。K5的性能非常一般,整数运算能力比不上Cyrix x86,但比"经典奔腾"略强;浮点预算能力远远比不上"经典奔腾",但稍强于Cyrix 6x86。综合来看,K5属于实力比较平均的产品,而上市之初的低廉的价格比其性能更加吸引消费者。另外,最高端的K5-RP200产量很小(惯例吧:)并且没有在中国大陆销售。 o AMD K6(1997年)处理器是与Intel PentiumMMX同档次的产品。是AMD在收购了NexGen,融入当时先进的NexGen 686技术之后的力作。它同样包含了MMX指令集以及比Pentium MMX整整大出一倍的64KB的L1缓存!整体比较而言,K6是一款成功的作品,只是在性能方面,浮点运算能力依旧低于Pentium MMX。 o K6-2(1998年)系列微处理器曾经是AMD的拳头产品,现在我们称之为经典。为了打败竞争对手Intel,AMD K6-2系列微处理器在K6的基础上做了大幅度的改进,其中最主要的是加入了对"3DNow!"指令的支持。"3DNow!"指令是对X86体系的重大突破,此项技术带给我们的好处是大大加强了计算机的3D处理能力,带给我们真正优秀的3D表现。当你使用专门"3DNow!"优化的软件时就能发现,K6-2的潜力是多么的巨大。而且大多数K6-2并没有锁频,加上025微米制造工艺带给我们的低发热量,能很轻松的超频使用。也就是从K6-2开始,超频不再是Intel的专有名词。同时,K62也继承了AMD一贯的传统,同频型号比Intel产品价格要低25%左右,市场销量惊人。K6-2系列上市之初使用的是"K6 3D"这个名字("3D"即"3DNow!"),待到正式上市才正名为"K6-2"。正因为如此,大多数K6 3D为ES(少量正式版,毕竟没有量产:)。K6 3D曾经有一款非标准的250MHz产品,但是在正式的K6-2系列中并没有出现。K6-2的最低频率为200MHz,最高达到550MHz。 o AMD于1999年2月推出了代号为"Sharptooth"(利齿)的K6-3(1998年)系列微处理器,它是AMD推出的最后一款支持Super架构和CPGA封装形式的CPU。K6-3采用了025微米制造工艺,集成256KB二级缓存(竞争对手Intel的新赛扬是128KB),并以CPU的主频速度运行。而曾经Socket 7主板上的L2此时就被K6-3自动识别为了L3,这对于高频率的CPU来说无疑很有优势,虽然K6-3的浮点运算依旧差强人意。因为各种原因,K6-3投放市场之后难觅踪迹,价格也并非平易近人,即便是更加先进的K6-3+出现之后。 oAMD于2001年10月推出了K8架构。尽管K8和K7采用了一样数目的浮点调度程序窗口(scheduling window ),但是整数单元从K7的18个扩充到了24个,此外,AMD将K7中的分支预测单元做了改进。global history counter buffer(用于记录CPU在某段时间内对数据的访问,称之为全历史计数缓冲器)比起Athlon来足足大了4倍,并在分支测错前流水线中可以容纳更多指令数,AMD在整数调度程序上的改进让K8的管线深度比Athlon多出2级。增加两级线管深度的目的在于提升K8的核心频率。在K8中,AMD增加了后备式转换缓冲,这是为了应对Opteron在服务器应用中的超大内存需求。 oAMD于2007下半年推出K10架构。 采用K10架构的 Barcelona为四核并有463亿晶体管。Barcelona是AMD第一款四核处理器,原生架构基于65nm工艺技术。和Intel Kentsfield四核不同的是,Barcelona并不是将两个双核封装在一起,而是真正的单芯片四核心。 ● Barcelona新特性解析:引入全新SSE128技术 Barcelona中的一项重要改进是被AMD称为“SSE128”的技术,在K8架构中,处理器可以并行处理两个SSE指令,但是SSE执行单元一般只有64位带宽。对于128位的SSE *** 作,K8处理器需要将其作为两个64位指令对待。也就是说,当一个128位 SSE指令被取出后,首先需要将其解码为两个micro-ops,因此一个单指令还占用了额外的解码端口,降低了执行效率。 而Barcelona加宽了执行单元从64位到128位,所有128位的SSE *** 作不再需要进行解码分解为两个64位 *** 作,并且浮点调度器也可以支持这种128位 SSE *** 作,提高了执行效率。 提高SSE指令执行单元带宽的同时,也会带来一些新的变化,也可以说是新的瓶颈:指令存取带宽。为了将并行处理器过程中解码数量最大化,Barcelona开始支持32字节每时钟周期的指令存取,而先前K8架构只支持16字节。32字节的指令存取带宽不仅对处理器SSE代码有帮助,同时对于整数指令也有效果。 ● Barcelona新特性解析:内存控制器再度强化 当年当AMD将内存控制器集成至CPU内部时,我们看到了崭新而强大的K8构架。如今,Barcelona的内存控制器在设计上将又一次极大的改进其内存性能。 Intel Xeon服务器所有使用的FB-DIMM内存一大优势是,可以同时执行读和写命令到AMB,而在标准的DDR2内存中,你只能同时进行一个 *** 作,而且读和写的切换会有非常大的损失。如果是一连串的随机混合执行的话,将会带来非常严重的资源浪费,而如果是先全部读然后再转换到写的话,就可以避免性能的损失。K8内存控制器就采用读取优先于写的策略来提高运行效率,但是Barcelona则更加智能化。 但是读取的数据会被先存放在buffer中,而不采用先直接执行写,但当它的容量达到了极限就会溢出,为了避免这种情况,在此之前才对读写之间进行切换,同时可以带来带宽和延迟方面效率的提高。K8核心配备的是128-bits宽度的单内存控制器,但是在Barcelona中,AMD把它分割成两个64-bit,每个控制器可以独立的进行 *** 作,因此它可以带来效率上的不小提升,尤其是在四核执行的环境下,每个核心可以独立占有内存访问资源。 Barcelonas中集成的北桥部分(注意不是主板北桥)也被设计成更高的带宽,更深的buffers将允许更高的带宽利用率,同时北桥自身已经可以使用未来的内存技术,比如DDR3。 内存控制器的预取功能是运用相当广泛、十分重要的一项功能。预取可以减少内存延迟对整体性能的负面影响。当NVIDIA发布nForce2主板时,重点介绍的就是nForce2芯片组的128位智能预取功能。Intel在发布Core 2处理器之时也强调了CORE构架每核心拥有三个预取单元。 K8构架中每个核心设计有2个预取器,一个是指令预取器,另一个是数据预取器。K8L构架的Barcelona保持了2个的数量,但在性能上有了较大的改进。一个明显的改进是数据预取器直接将数据寄存入L1缓存中,相比K8构架中寄存入L2缓存的做法,新的数据预取器准确率更高,速度更快,内存性能及CPU整体性能将得益于此。 ● Barcelona新特性解析:创新——三级缓存 受工艺技术方面的影响,AMD处理器的缓存容量一直都要落后于Intel,AMD自己也清楚自己无法在宝贵的die上加入更多的晶体管来实现大容量的缓存,但是勇于创新的AMD却找到了更好的办法——集成内存控制器。 处理器整合内存控制器可以说是一项杰作,拥有整合内存控制器的K8构架仅依靠512KB的L2缓存就能够击败当时的对手Pentium 4。直到现在的Athlon 64 X2也依然保持着Intel 2002年就已过时的512KB L2缓存。 现在Core 2已经拥有了4MB的L2缓存,看来Intel和AMD之间的缓存差距还将保持,因为Barcelona的L2缓存依然是512KB。相比之下,Intel四核的Kentsfield芯片拥有8MB的L2缓存,而2007年末上市的新型Penryn芯片将拥有12MB的L2缓存。 Barcelona的缓存体系和K8构架有一定的相似之处,它的四颗核心各拥有64KB的L1缓存和512KB的L2缓存。从简化芯片设计的角度来看,四核心共享巨大的L2缓存对K8L构架而言并不合适,所以AMD引入了L3缓存,得益于65nm工艺,Barcelona在一颗晶圆上集成四颗核心外,还集成了一块2MB容量的L3缓存。也就是说L3缓存与4颗内核同样原生于一块晶圆,其容量为最小2M起跳。同L2缓存一样,L3缓存也是独立的,L1缓存的数据和L3缓存的数据将不会重复。 Barcelona的缓存工作原理是:L2缓存是作为L1缓存的备用空间。L1缓存储存着CPU当前最需要的数据,而当空间不足时,一些不是最重要的数据就转移到L2缓存中。而当未来再次需要时,则从L2缓存中再次转移到L1缓存中。新加入的L3缓存延续了L2缓存的角色,四颗核心的L2缓存将溢出的数据暂时寄存在L3缓存中。 L1缓存和L2缓存依然分别是2路和16路,L3缓存则是32路。快速的32路L3缓存不仅可以更好的满足多任务并行,而且对单任务的执行也有着较大积极作用。尤其在3D运用方面,2MB的L3缓存将对性能产生极大的推进作用。 AMD全新45nm的Shanghai架构 2008年11月13日,AMD公司宣布其代号为“上海”的新一代45nm四核皓龙处理器已经广泛上市。“上海”性能最高提升达35%,而空载时的功耗可显著降低35%。新一代四核AMD皓龙处理器采用创新的设计,能够带来更高的虚拟化性能和每瓦性价比,帮助数据中心提高效率,降低复杂性,从而最大限度地满足IT管理者的需要,以更低的投入实现更高的产出。 AMD公司负责计算解决方案业务的高级副总裁Randy Allen表示:“新一代四核AMD皓龙处理器是在正确的时间诞生的一款正确的产品。堪称完美的提前推出,使之成为x86服务器性能的新王者。通过与OEM厂商和解决方案供应商等合作伙伴的紧密合作,AMD的创新技术在满足企业用户目前最基本需求的同时,还为其未来发展做好准备。自4年前AMD推出世界首款x86双核处理器以来,这一增强的新一代皓龙处理器带来了AMD产品性能和每瓦性价比的最大提升。” 领先的性能满足当今最迫切的商务需求 数据中心的管理者们面对日益增长的压力,诸如网络服务、数据库应用等的企业工作负载对计算的需求越来越高;而在当前的IT支出环境下,还要以更低的投入实现更高的产出。迅速增长的新计算技术如云计算和虚拟化等,在今年第二季度实现了60%的同比增长率3,这些技术在迅速应用的同时也迫切需要一个均衡的系统解决方案。最新的四核AMD皓龙处理器进一步增强了AMD独有的直连架构优势,能够为包括云计算和虚拟化在内的日渐扩大的异构计算环境提供具有出色稳定性和扩展性的解决方案。 卓越的虚拟化性能 具有改进的AMD直连架构和AMD虚拟化技术(AMD-V(TM)),45nm四核皓龙处理器成为已有的基于AMD技术的虚拟化平台的不二选择,目前全球的OEM厂商已基于上一代AMD四核皓龙处理器推出了9款专门为虚拟化应用而设计的服务器。新一代处理器可提供更快的虚拟机转换时间,并优化快速虚拟化索引技术(RVI)的特性,从而提高虚拟机的效率,AMD的AMD-V(TM)还可以减少软件虚拟化的开销。 无与伦比的性价比 与历代的AMD皓龙处理器相比,新一代四核皓龙处理器带来了前所未有的性能和每瓦性能比显著增强,包括: o 以与上代四核皓龙处理器相同的功耗设计,大幅提高CPU时钟频率。这得益于处理器设计增强、AMD业界领先的45nm沉浸式光刻技术和超强的处理器设计与验证能力。 o L3缓存容量提高200%,达到6MB,增强虚拟化、数据库和Java等内存密集型应用的性能。 o 支持DDR2-800内存,与现有AMD皓龙处理器相比内存带宽实现了大幅提高,并且比竞品使用的Fully-Buffered DIMM具有更高的能效。 o 即将推出的超传输总线(TM)30 (HyperTransport(TM) 30)技术将进一步增强AMD革命性的直连架构,计划于2009年2季度将处理器之间的通信带宽提高到176GB/s。 无可匹敌的节能特性 AMD皓龙处理器业已带来了业界领先的X86服务器处理器每瓦性价比,与之相比,新一代45nm四核AMD皓龙处理器在空载状态的能耗可以大幅降低35%,而性能可提高达35%。“上海”采用了众多的新型节能技术:AMD智能预取技术,可允许处理器核心在空载时进入“暂停”状态,而不会对应用性能和缓存中的数据有任何影响,从而显著降低能耗;AMD CoolCore(TM) 技术能够关闭处理器中非工作区域以进一步节省能耗。 在平台配置相似的情况下,基于75瓦AMD 四核皓龙处理器的平台,与基于50瓦处理器的竞争平台相比,具有高达30%的每瓦性能比优势。相似平台配置下,基于AMD 四核皓龙处理器2380的平台,空载状态的功耗为138瓦;与之对比,基于
英特尔四核处理器的平台在相同状态下的功耗则为179瓦。基于AMD 四核皓龙2380型号处理器的平台,在SPECpower_ssj(TM)2008基准测试中取得761ssj_ops/每瓦的总成绩 (308,089 ssj_ops @ 100% 的目标负载),而英特尔四核平台为总成绩为561ssj_ops/每瓦 (267,804 ssj_ops @ 100%的目标负载) 4 前所未有的平台稳定性 作为唯一用相同的架构提供2路到8路服务器处理器的x86微处理器制造商,AMD新一代45nm四核皓龙处理器在插槽和散热设计与上代四核和双核AMD皓龙处理器兼容,延续了AMD的领先地位。这可以帮助消费者减少平台管理的复杂性和费用,增强数据中心的正常运行时间和生产力。新的45nm处理器适用于现有的Socket 1207插槽架构,未来代号为“Istanbul”的AMD 下一代皓龙处理器也计划使用相同插槽。
o 采用直连架构的 AMD 皓龙(Opteron)(TM) 处理器可以提供领先的多技术。 使IT管理员能够在同一服务器上运行32位与64位应用软件,前提是该服务器使用的是64位 *** 作系统。 o AMD 速龙(Athlon64),又叫阿斯龙(TM) 64 处理器可以为企业的台式电脑用户提供卓越的性能和重要的投资保护,具有出色的功能和性能,可以提供栩栩如生的数字媒体效果――包括音乐、视频、照片和 DVD 等。 o AMD 双核速龙(TM) 64(AthlonX2 64 )处理器可以提供更AMD双核速龙64处理器架构高的多任务性能,帮助企业在更短的时间内完成更多的任务(包括业务应用和视频、照片编辑,内容创建和音频制作等)。这些强大的功能使其成为那些即将上市的新型媒体中心的最佳选择。 o AMD 炫龙(TM) 64(Turion64) 移动计算技术可以利用移动计算领域的最新成果,提供最高的移动办公能力,以及领先的 64 位计算技术。 o AMD 闪龙(TM)(Sempron64) 处理器不仅可以为企业提供出色的性价比,而且可以提高员工的日常工作效率。 o AMD 羿龙(TM)(phenom)处理器 全新架构的4核处理器,进一步满足用户需求(在命名中取消“64”,因为现今的CPU都是64位的,不必再标明)。为满足消费者的不同需求,AMD近期也推出了3核羿龙产品! 对于消费者, AMD 也提供全系列 64 位产品。 o AMD 雷鸟(TM) (Thunderbird)处理器 o AMD 钻龙(TM) (Duron)处理器可以说是雷鸟的精简便宜版,架构和雷鸟处理器一样,其差别除了时脉较低之外,就是内建的L2 Cache,只有64K 。
INTEL
2000年:英特尔奔腾4(Pentium 4)处理器 基于英特尔奔腾4处理器的个人电脑用户可以创作专业品质的**;通过互联网发送像电视一样的视频;使用实时视频语音工具进行交流;实时渲染3D图形;为 MP3 播放器快速编码音乐;在与互联网进行连接的状态下同时运行多个多媒体应用。该处理器最初推出时就拥有4200万个晶体管和仅为018微米的电路线。 英特尔首款微处理器4004的运行速率为108KHz,而现今的英特尔奔腾4处理器的初速率已经达到了15GHz,如果汽车的速度也能有同等提升的话,那么从旧金山开车到纽约只需要13秒。 2001年:英特尔至强(Xeon)处理器 英特尔至强处理器的应用目标是那些即将出现的高性能和中端双路工作站、以及双路和多路配置的服务器。该平台为客户提供了一种兼具高性能和低价格优势的全新 *** 作系统和应用选择。与基于英特尔 奔腾III至强处理器的系统相比,采用英特尔至强处理器的工作站根据应用和配置的不同,其性能预计可提升30%到90%左右。该处理器基于英特尔NetBurst 架构,设计用于为视频和音频应用、高级互联网技术及复杂3D图形提供所需要的计算动力。 2001年:英特尔安腾(Itanium)处理器 英特尔安腾处理器是英特尔推出的64位处理器家族中的首款产品。该处理器是在基于英特尔简明并行指令计算(EPIC)设计技术的全新架构之基础上开发制造的,设计用于高端、企业级服务器和工作站。该处理器能够为要求最苛刻的企业和高性能计算应用(包括电子商务安全交易、大型数据库、计算机辅助的机械工程以及精密的科学和工程计算)提供全球最出色的性能。 2002年:英特尔安腾2处理器(Itanium2) Intel Pentium 4 /Hyper Threading处理器 英特尔安腾2处理器是安腾处理器家族的第二位成员,同样是一款企业用处理器。该处理器家族为数据密集程度最高、业务最关键和技术要求最高的计算应用提供英特尔 架构的出色性能及规模经济等优势。该处理器能为数据库、计算机辅助工程、网上交易安全等提供领先的性能。 英特尔推出新款Intel Pentium 4处理器内含创新的Hyper-Threading(HT)超执行绪技术。超执行绪技术打造出新等级的高效能桌上型计算机,能同时快速执行多项运算应用, 或针对支持多重执行绪的软件带来更高的效能。超执行绪技术让计算机效能增加25%。除了为桌上型计算机使用者提供超执行绪技术外,英特尔亦达成另一项计算 机里程碑,就是推出运作时脉达306GHz的Pentium 4处理器,是首款每秒执行30亿个运算周期的商业微处理器,如此优异的性能要归功于当时业界最先进的013微米制程技术,翌年,内建超执行绪技术的 Intel Pentium4处理器时脉达到32GHz。 2003年:英特尔 奔腾 M(Pentium M) /赛扬 M (Celeron M)处理器 英特尔奔腾M处理器,英特尔855芯片组家族以及英特尔PRO/无线2100网卡是英特尔迅驰 移动计算技术的三大组成部分。英特尔迅驰移动计算技术专门设计用于便携式计算,具有内建的无线局域网能力和突破性的创新移动性能。该处理器支持更耐久的电池使用时间,以及更轻更薄的笔记本电脑造形。 2005年:Intel Pentium D 处理器 首颗内含2个处理核心的Intel Pentium D处理器登场,正式揭开x86处理器多核心时代。(绰号胶水双核,被别人这样叫是有原因的,PD由于高频低能噪音大,所以才有这个称号) 2005年:Intel Core处理器 这是英特尔向酷睿架构迈进的第一步。但是,酷睿处理器并没有采用酷睿架构,而是介于NetBurst和Core之间(第一个基于Core架构的处理器是酷睿2)。最初酷睿处理器是面向移动平台的,它是英特尔迅驰3的一个模块,但是后来苹果转向英特尔平台后推出的台式机就是采用的酷睿处理器。 酷睿使双核技术在移动平台上第一次得到实现。与后来的酷睿2类似,酷睿仍然有数个版本:Duo双核版,Solo单核版。其中还有数个低电压版型号以满足对节电要求苛刻的用户的要求。 2006年:Intel Core 2 (酷睿2,俗称“扣肉”)/ 赛扬 Duo 处理器 Core微架构桌面/移动处理器:桌面处理器核心代号Conroe。将命名为Core 2 Duo/Extreme家族,其E6700 26GHz型号比先前推出之最强的Intel Pentium D 960(36GHz)处理器,在效能方面提升了40%,省电效率亦增加40%,Core 2 Duo处理器内含291亿个晶体管。移动处理器核心代号Merom。是迅驰35和迅驰4的处理器模块。当然这两种酷睿2有区别,最主要的就是将FSB由667MHz/533MHz提升到了800MHz。
评论列表(0条)