服务器CPU是为了长时间稳定工作而存在的,基本都是设计为能常年连续工作的。
而普通桌面级CPU是按72个小时连续工作而设计的。
所以服务器CPU相比家用CPU在稳定性和可靠性方面有着天壤之别。
所以通常情况下,服务器是365天开机工作的,而家用电脑在不使用时,我们还是习惯让他保持关机状态。
中央处理器(CPU,Central Processing Unit)是一块超大规模的集成电路,是一台计算机的运算核心(Core)和控制核心( Control Unit)。
它的功能主要是解释计算机指令以及处理计算机软件中的数据。
中央处理器主要包括运算器(算术逻辑运算单元,ALU,Arithmetic Logic Unit)和高速缓冲存储器(Cache)及实现它们之间联系的数据(Data)、控制及状态的总线(Bus)。
它与内部存储器(Memory)和输入/输出(I/O)设备合称为电子计算机三大核心部件。
通常情况下,如果你的cpu占用率在0% -- 75%之间变化,这个是正常的。但是要是经常在90%以上,甚至999%或者100%,那就算不正常。下面是我给大家带来服务器cpu多少使用率算正常,希望对大家有帮助!
其实这个没有绝对的说法,说CPU使用多少算正常。
通常情况下,如果你的cpu占用率在0% -- 75%之间变化,这个是正常的。但是要是经常在90%以上,甚至999%或者100%,那就算不正常。
服务器CPU占有率其实就是本机运行的程序占用的CPU资源,表示你的机器在某个时间点的运行程序的情况。
1、使用率越高,说明机器在这个时间上运行了很多程序,反之较少。
2、使用率的高低与本机的CPU强弱有直接关系。现代分时多任务 *** 作系统对CPU都是分时间片使用的:比如A进程占用10ms,然后B进程占用30ms,然后空闲60ms,再又是A进程占10ms,B进程占30ms,空闲60ms;如果在一段时间内都是如此,那么这段时间内的占用率为40%。
3、CPU对线程的响应并不是连续的,通常会在一段时间后自动中断线程。未响应的线程增加,就会不断加大CPU的占用。cpu使用率高的原因有很多,但是一般都是由于病毒木马或开机启动项过多所致。高CPU使用率也可能表明应用程序的调整或设计不良。优化应用程序可以降低CPU的使用率。
相关阅读推荐:
处理指令英文Processing instructions;这是指控制程序中指令的执行顺序。程序中的各指令之间是有严格顺序的,必须严格按程序规定的顺序执行,才能保证计算机系统工作的正确性。
执行 *** 作英文Perform an action;一条指令的功能往往是由计算机中的部件执行一系列的 *** 作来实现的。CPU要根据指令的功能,产生相应的 *** 作控制信号,发给相应的部件,从而控制这些部件按指令的要求进行动作。
控制时间英文Control time;时间控制就是对各种 *** 作实施时间上的定时。在一条指令的执行过程中,在什么时间做什么 *** 作均应受到严格的控制。只有这样,计算机才能有条不紊地工作。
处理数据即对数据进行算术运算和逻辑运算,或进行其他的`信息处理。其功能主要是解释计算机指令以及处理计算机软件中的数据,并执行指令。在微型计算机中又称微处理器,计算机的所有 *** 作都受CPU控制,CPU的性能指标直接决定了微机系统的性能指标。CPU具有以下4个方面的基本功能:数据通信,资源共享,分布式处理,提供系统可靠性。运作原理可基本分为四个阶段:提取(Fetch)、解码(Decode)、执行(Execute)和写回(Writeback)。
服务器CPU和普通CPU有什么不同
一、指令集不同
家用或者用工作用电脑配备的普通CPU,通常为CISC复杂指令集,追求指令集的大而全,尽量把各种常用的功能集成到一块,但是调用速度和命中率相比服务器CPU较低一些。
服务器CPU的指令一般是采用的RISC(精简指令集)。这种设计的好处就是针对性更强,可以根据不同的需求进行专门的优化,能效更高。
二、缓存不同
缓存也决定着CPU的性能,由于服务器CPU对运算性能要求高,所以服务器CPU往往应用了最先进的工艺和技术,并且配备了一二三级缓存,运行能力更强。服务器CPU很早就用上了3级缓存。普通cpu是近几年才用上了缓存技术。
三、接口不同
服务器cpu和普通cpu接口往往不同,目前服务器CPU接口大多为Socket 771、Socket 775、LGA 2011、LGA 1150相比普通CPU接口尽管不少相同,但实际上搭配的主板并不相同。服务器cpu配备的主板通常没有显卡卡槽,因为CPU自带的核心显卡即可满足需求,并且其CPU总线带宽比家用CPU高。
四、稳定性要求不同
服务器CPU是为了长时间稳定工作而存在的,基本都是设计为能常年连续工作的。服务器CPU相比家用CPU在稳定性和可靠性方面有着天壤之别,一般服务器都是365天开机运行,只有偶尔停机维护,对稳定性要求极高。
普通CPU则是按72个小时连续工作而设计的,家用电脑在不使用时,我们还是习惯让他保持关机状态,一般每天都会关机。
五、多路互联支持不同
多路互联是服务器上的一项技术,比如服务器主板可以同时拥有多个CPU插槽,可以同时安装多个CPU,这个就是CPU多路互联技术,这项技术目前只有服务器CPU才支持,普通家用电脑,一块主板只可以安装一个CPU,不支持多路互联。
六、价格不同
由于服务器CPU针对高稳定性设计,在用料上一般都是选用优质材质,并且支持多路互联和长时间工作,和相同性能的普通CPU比,价格自然也是更高。此外,高端服务器CPU更上运用大量的最新先进技术,价格更贵,因此一般服务器CPU价格都在千元以上,高端服务器CPU都是在万元以上,甚至几十万。
而普通CPU价格通常几百元到几千元,主流产品价格基本在千元左右。
以上就是服务器cpu和普通cpu区别,可能很多朋友会问,服务器CPU可以作为家用电脑的CPU吗?答案是否定的,尺有所短寸有所长,两者定位与设计不同。
因为CPU的性能主要靠主板和内存才能完全发挥出来,而由于先天性的设计特点,很多家用电脑的主板是不适合服务器CPU使用的,即使可以用,很多时候也无法保证发挥出其性能优势。而且服务器主板一般都没有显卡槽,因为对服务器来说用集成显卡即可了,对于游戏性能并没有要求。
但是在家用领域,独显则是高清游戏必不可少的环节。所以说家用CPU的设计更符合普通PC电脑的特点,而服务器CPU有着其自身的使命与优势。当然,服务器CPU和桌面CPU两者也是可以互相改进的,比如大家熟悉的至强E3-1230V3处理器,就是由服务器CPU改进而来的,屏蔽了核心显卡,主打高性价比。
普通能买到的服务器CPU 最高是16核心 AMD皓龙CPU如果能算上超线程 Intel的E5 V2系列最高能达到12核心 24线程
民用最高是8核 AMD FX系列CPU
超线程的话 Intel 有6核12线程的
腾讯的服务端是由很多服务器进行计算的 而不是一台机器
CPU和内存CPU的类型、主频和数量在相当程度上决定着服务器的性能;服务器应采用专用的ECC校验内存,并且应当与不同的CPU搭配使用。
芯片组与主板即使采用相同的芯片组,不同的主板设计也会对服务器性能产生重要影响。
网卡服务器应当连接在传输速率最快的端口上,并最少配置一块千兆网卡。对于某些有特殊应用的服务器(如FTP、文件服务器或视频点播服务器),还应当配置两块千兆网卡。
硬盘和RAID卡硬盘的读取/写入速率决定着服务器的处理速度和响应速率。除了在入门级服务器上可采用IDE硬盘外,通常都应采用传输速率更高、扩展性更好的SCSI硬盘。对于一些不能轻易中止运行的服务器而言,还应当采用热插拔硬盘,以保证服务器的不停机维护和扩容。
磁盘冗余采用两块或多块硬盘来实现磁盘阵列;网卡、电源、风扇等部件冗余可以保证部分硬件损坏之后,服务器仍然能够正常运行。
热插拔是指带电进行硬盘或板卡的插拔 *** 作,实现故障恢复和系统扩容。
1、服务器处理器主频
服务器处理器主频也叫时钟频率,单位是MHz,用来表示CPU的运算速度。CPU的主频=外频×倍频系数。很多人认为主频就决定着CPU的运行速度,这不仅是个片面的,而且对于服务器来讲,这个认识也出现了偏差。至今,没有一条确定的公式能够实现主频和实际的运算速度两者之间的数值关系,即使是两大处理器厂家Intel和AMD,在这点上也存在着很大的争议,我们从Intel的产品的发展趋势,可以看出Intel很注重加强自身主频的发展。像其他的处理器厂家,有人曾经拿过一快1G的全美达来做比较,它的运行效率相当于2G的Intel处理器。
所以,CPU的主频与CPU实际的运算能力是没有直接关系的,主频表示在CPU内数字脉冲信号震荡的速度。在Intel的处理器产品中,我们也可以看到这样的例子:1GHzItanium芯片能够表现得差不多跟266GHzXeon/Opteron一样快,或是15GHzItanium2大约跟4GHzXeon/Opteron一样快。CPU的运算速度还要看CPU的流水线的各方面的性能指标。
当然,主频和实际的运算速度是有关的,只能说主频仅仅是CPU性能表现的一个方面,而不代表CPU的整体性能。
2、服务器前端总线(FSB)频率
前端总线(FSB)频率(即总线频率)是直接影响CPU与内存直接数据交换速度。有一条公式可以计算,即数据带宽=(总线频率×数据带宽)/8,数据传输最大带宽取决于所有同时传输的数据的宽度和传输频率。比方,现在的支持64位的至强Nocona,前端总线是800MHz,按照公式,它的数据传输最大带宽是64GB/秒。
外频与前端总线(FSB)频率的区别:前端总线的速度指的是数据传输的速度,外频是CPU与主板之间同步运行的速度。也就是说,100MHz外频特指数字脉冲信号在每秒钟震荡一千万次;而100MHz前端总线指的是每秒钟CPU可接受的数据传输量是100MHz×64bit÷8Byte/bit=800MB/s。
其实现在“HyperTransport”构架的出现,让这种实际意义上的前端总线(FSB)频率发生了变化。之前我们知道IA-32架构必须有三大重要的构件:内存控制器Hub(MCH),I/O控制器Hub和PCIHub,像Intel很典型的芯片组Intel7501、Intel7505芯片组,为双至强处理器量身定做的,它们所包含的MCH为CPU提供了频率为533MHz的前端总线,配合DDR内存,前端总线带宽可达到43GB/秒。
但随着处理器性能不断提高同时给系统架构带来了很多问题。而“HyperTransport”构架不但解决了问题,而且更有效地提高了总线带宽,比方AMDOpteron处理器,灵活的HyperTransportI/O总线体系结构让它整合了内存控制器,使处理器不通过系统总线传给芯片组而直接和内存交换数据。这样的话,前端总线(FSB)频率在AMDOpteron处理器就不知道从何谈起了。
3、处理器外频
外频是CPU的基准频率,单位也是MHz。CPU的外频决定着整块主板的运行速度。说白了,在台式机中,我们所说的超频,都是超CPU的外频(当然一般情况下,CPU的倍频都是被锁住的)相信这点是很好理解的。但对于服务器CPU来讲,超频是绝对不允许的。前面说到CPU决定着主板的运行速度,两者是同步运行的,如果把服务器CPU超频了,改变了外频,会产生异步运行,(台式机很多主板都支持异步运行)这样会造成整个服务器系统的不稳定。
目前的绝大部分电脑系统中外频也是内存与主板之间的同步运行的速度,在这种方式下,可以理解为CPU的外频直接与内存相连通,实现两者间的同步运行状态。外频与前端总线(FSB)频率很容易被混为一谈,下面的前端总线介绍我们谈谈两者的区别。
4、CPU的位和字长
位:在数字电路和电脑技术中采用二进制,代码只有“0”和“1”,其中无论是“0”或是“1”在CPU中都是一“位”。
字长:电脑技术中对CPU在单位时间内(同一时间)能一次处理的二进制数的位数叫字长。所以能处理字长为8位数据的CPU通常就叫8位的CPU。同理32位的CPU就能在单位时间内处理字长为32位的二进制数据。字节和字长的区别:由于常用的英文字符用8位二进制就可以表示,所以通常就将8位称为一个字节。字长的长度是不固定的,对于不同的CPU、字长的长度也不一样。8位的CPU一次只能处理一个字节,而32位的CPU一次就能处理4个字节,同理字长为64位的CPU一次可以处理8个字节。
5、倍频系数
倍频系数是指CPU主频与外频之间的相对比例关系。在相同的外频下,倍频越高CPU的频率也越高。但实际上,在相同外频的前提下,高倍频的CPU本身意义并不大。这是因为CPU与系统之间数据传输速度是有限的,一味追求高倍频而得到高主频的CPU就会出现明显的“瓶颈”效应—CPU从系统中得到数据的极限速度不能够满足CPU运算的速度。一般除了工程样版的Intel的CPU都是锁了倍频的,而AMD之前都没有锁。
6、CPU缓存
缓存大小也是CPU的重要指标之一,而且缓存的结构和大小对CPU速度的影响非常大,CPU内缓存的运行频率极高,一般是和处理器同频运作,工作效率远远大于系统内存和硬盘。实际工作时,CPU往往需要重复读取同样的数据块,而缓存容量的增大,可以大幅度提升CPU内部读取数据的命中率,而不用再到内存或者硬盘上寻找,以此提高系统性能。但是由于CPU芯片面积和成本的因素来考虑,缓存都很小。
L1Cache(一级缓存)是CPU第一层高速缓存,分为数据缓存和指令缓存。内置的L1高速缓存的容量和结构对CPU的性能影响较大,不过高速缓冲存储器均由静态RAM组成,结构较复杂,在CPU管芯面积不能太大的情况下,L1级高速缓存的容量不可能做得太大。一般服务器CPU的L1缓存的容量通常在32—256KB。
L2Cache(二级缓存)是CPU的第二层高速缓存,分内部和外部两种芯片。内部的芯片二级缓存运行速度与主频相同,而外部的二级缓存则只有主频的一半。L2高速缓存容量也会影响CPU的性能,原则是越大越好,现在家庭用CPU容量最大的是512KB,而服务器和工作站上用CPU的L2高速缓存更高达256-1MB,有的高达2MB或者3MB。
其实最早的L3缓存被应用在AMD发布的K6-III处理器上,当时的L3缓存受限于制造工艺,并没有被集成进芯片内部,而是集成在主板上。在只能够和系统总线频率同步的L3缓存同主内存其实差不了多少。后来使用L3缓存的是英特尔为服务器市场所推出的Itanium处理器。接着就是P4EE和至强MP。Intel还打算推出一款9MBL3缓存的Itanium2处理器,和以后24MBL3缓存的双核心Itanium2处理器。
但基本上L3缓存对处理器的性能提高显得不是很重要,比方配备1MBL3缓存的XeonMP处理器却仍然不是Opteron的对手,由此可见前端总线的增加,要比缓存增加带来更有效的性能提升。
服务器CPU,顾名思义,就是在服务器上使用的CPU(Center Process Unit中央处理器)。众所周知,服务器是网络中的重要设备,要接受少至几十人、多至成千上万人的访问,因此对服务器具有大数据量的快速吞吐、超强的稳定性、长时间运行等严格要求。下面是我收集整理的服务器cpu是什么,欢迎阅读。
服务器的中央处理器(CPU),在内部结构上是跟台式机的差不多,它们都是由运算器和控制器组成,CPU的内部结构可分为控制单元,逻辑单元和存储单元三大部分。当然工作原理也是一样。随着两者的需求和发展,台式机和服务器的处理器在技术、性能指标等各方面都存在并存的现象,一个最明显的现象,像Intel的奔腾系列产品,一直应用于服务器的低端领域。但不代表着服务器CPU与台式机将会完全一样,下面内容会让你对服务器CPU有个全方位的了解……
一、产品篇
厂商
32bit 64bit
CISC型 VLIM型 RISC型
IA-32 X86-64 IA-64
AMD64 EM64T
Intel Pentium、Xeon Nocona Itanium
AMD Athlon MP Opteron
Transmeta
(全美达) Efficeon
IBM/Apple POWER、POWERPC
HP PA-RISC、Alpha
SGI MIPS
SUN UltraSPARC
上面简单把服务器处理器列了一下表,我们可以很清晰看出,服务器处理器按CPU的指令系统来区分,有CISC型CPU和RISC型CPU两类,后来出现了一种64位的VLIM指令系统的CPU,这种架构也叫做“IA-64”。目前基于这种指令架构的MPU有Intel的IA-64、EM64T和AMD的x86-64。RISC型的CPU是我们比较不熟悉的'类型,下面一一介绍;
IBM:
IBM 的四条处理器产品线 —— POWER 体系结构,PowerPC 系列的处理器,Star 系列(很少用于服务器中),以及 IBM 大型机上所采用的芯片
POWER 是 Power Optimization With Enhanced RISC 的缩写,是 IBM 的很多服务器、工作站和超级计算机的主要处理器。POWER 芯片起源于 801 CPU,是第二代 RISC 处理器。POWER 芯片在 1990 年被 RS 或 RISC System/6000 UNIX 工作站(现在称为 eServer 和 pSeries)采用,POWER 的产品有 POWER1、POWER2、POWER3、POWER4,现在最高端的是 POWER5。POWER5 处理器是目前单个芯片中性能最好的芯片。POWER6计划 2006 年发布。
PowerPC 是 Apple、IBM 和摩托罗拉(Motorola)联盟(也称为 AIM 联盟)的产物,它基于 POWER 体系结构,但是与 POWER 又有很多的不同。例如,PowerPC 是开放的,它既支持高端的内存模型,也支持低端的内存模型,而 POWER 芯片是高端的。最初的 PowerPC 设计也着重于浮点性能和多处理能力的研究。当然,它也包含了大部分 POWER 指令。很多应用程序都能在 PowerPC 上正常工作,这可能需要重新编译以进行一些转换。从 2000 年开始,摩托罗拉和 IBM 的 PowerPC 芯片都开始遵循 Book E 规范,这样可以提供一些增强特性,从而使得 PowerPC 对嵌入式处理器应用(例如网络和存储设备,以及消费者设备)更具有吸引力。PowerPC 体系结构的最大一个优点是它是开放的:它定义了一个指令集(ISA),并且允许任何人来设计和制造与 PowerPC 兼容的处理器;为了支持 PowerPC 而开发的软件模块的源代码都可以自由使用。最后,PowerPC 核心的精简为其他部件预留了很大的空间,从新添加缓存到协处理都是如此,这样可以实现任意的设计复杂度。IBM 的 4 条服务器产品线中有两条与 Apple 计算机的桌面和服务器产品线同样基于 PowerPC 体系结构,分别是 Nintendo GameCube 和 IBM 的“蓝色基因(Blue Gene)”超级计算机。现在,三种主要的 PowerPC 系列是嵌入式 PowerPC 400 系列以及独立的 PowerPC 700 和 PowerPC 900 系列。而PowerPC 600 系列,是第一个 PowerPC 芯片。它是 POWER 和 PowerPC 体系结构之间的桥梁。现在的PowerPC970,采用013微米SOI工艺制造,其内只有一颗CPU核心,带有512K 芯片内L2 cache。
HP:
HP(惠普)公司自已开发、研制的适用于服务器的RISC芯片——PA-RISC,于1986年问世。目前,HP主要开发64位超标量处理器PA-8000系列。第一款芯片的型号为PA-8000,主频为180MHz,后来陆续推出PA-8200、PA-8500、PA-8600、PA-8700、PA-8800型号。还有一个就是HP的“私生子”Alpha。(Alpha处理器最早由DEC公司设计制造,在Compaq公司收购DEC之后,Alpha处理器继续得到发展,后来又被惠普公司收购)
HP于2002年开始就公布了其两大RISC处理器——PA-RISC和Alpha的发展计划,其中PA-RISC与Alpha处理器至少要发展到2006年,对基于其上的服务器的服务支持将至少持续到2011年。2006年,HP将会推出PA-8900。而对于Alpha的发展,惠普公司于已经于2004年八月份发布了其面向AlphaServer Unix服务器的最后一款处理器产品——EV7z。
SUN:
1987年,SUN和TI公司合作开发了RISC微处理器——SPARC。Sun公司以其性能优秀的工作站闻名,这些工作站的心脏全都是采用Sun公司自己研发的Sparc芯片。SPARC微处理器最突出的特点就是它的可扩展性,这是业界出现的第一款有可扩展性功能的微处理。SPARC的推出为SUN赢得了高端微处理器市场的领先地位。
1999年6月,UltraSPARC III首次亮相。它采用先进的018微米工艺制造,全部采用64位结构和VIS指令集,时钟频率从600MHz起,可用于高达1000个处理器协同工作的系统上。UltraSPARC III和Solaris *** 作系统的应用实现了百分之百的二进制兼容,完全支持客户的软件投资,得到众多的独立软件供应商的支持。
根据Sun公司未来的发展规划,在64位UltraSparc处理器方面,主要有3个系列,首先是可扩展式s系列,主要用于高性能、易扩展的多处理器系统。目前UltraSparc Ⅲs的频率已经达到750GHz。将推出UltraSparc Ⅳs和UltraSparc Ⅴs等型号。其中UltraSparc Ⅳs的频率为1GHz,UltraSparc Ⅴs则为15GHz。其次是集成式i系列,它将多种系统功能集成在一个处理器上,为单处理器系统提供了更高的效益。已经推出的UltraSparc Ⅲi的频率达到700GHz,未来的UltraSparc Ⅳi的频率将达到1GHz。最后是嵌入式e系列,为用户提供理想的性能价格比,嵌入式应用包括瘦客户机、电缆调制解调器和网络接口等。Sun公司还将推出主频300、400、500MHz等版本的处理器。
SGI
MIPS技术公司是一家设计制造高性能、高档次及嵌入式32位和64位处理器的厂商,在RISC处理器方面占有重要地位。1984年,MIPS计算机公司成立。1992年,SGI收购了MIPS计算机公司。1998年,MIPS脱离SGI,成为MIPS技术公司。
MIPS公司设计RISC处理器始于二十世纪八十年代初,1986年推出R2000处理器,1988年推R3000处理器,1991年推出第一款64位商用微处器R4000。之后又陆续推出R8000(于1994年)、R10000(于1996年)和R12000(于1997年)等型号。
随后,MIPS公司的战略发生变化,把重点放在嵌入式系统。1999年,MIPS公司发布MIPS32和MIPS64架构标准,为未来MIPS处理器的开发奠定了基础。新的架构集成了所有原来NIPS指令集,并且增加了许多更强大的功能。MIPS公司陆续开发了高性能、低功耗的32位处理器内核(core)MIPS324Kc与高性能64位处理器内核MIPS64 5Kc。2000年,MIPS公司发布了针对MIPS32 4Kc的版本以及64位MIPS 64 20Kc处理器内核。
MIPS技术公司是一家设计制造高性能、高档次及嵌入式32位和64位处理器的厂商。1986年推出R2000处理器,1988年推出R3000处理器,1991年推出第一款64位商用微处理器R4000。之后,又陆续推出R8000(于1994年)、R10000(于1996年)和R12000(于1997年)等型号。1999年,MIPS公司发布MIPS 32和MIPS 64架构标准。2000年,MIPS公司发布了针对MIPS 32 4Kc的新版本以及未来64位MIPS 64 20Kc处理器内核。
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)