什么是图像识别?这个问题如果乍一问出,很多人可能都会愣一下,但一细想,便能说出很多很多的应用场景,想什么二维码啊,人脸识别啊,网站识图啊之类的。那么又有多少人去真正了解过这项技术呢?今天就让我给您简单介绍一下吧!
计算机识别一张图时会将其转化为数字,通过「训练」计算机可以知道这些数字代表的含义,但早期图像识别技术还不够发达,识别很容易因图像发生微小的变化而失灵。
得益于上世纪80年代提出的卷积神经网络(简称CNN)算法,图像识别技术得到了质的飞跃。要进行图像识别,我们首先依然需要提取图像的特征,提取图像特征也即对其进行数据化分析,这一过程中需要借助的数学方法称为卷积。
以一个最简单的一维图形C为例,计算机在识别任何图像之前都需要将其转化为数字,如下那么计算机是如何做到仅凭那些数字就认出原图像的呢?这里就需要借助「卷积核」进行卷积运算,提取「图像」(即图右的数字化“图像”)的特征。卷积核类似于计算机最初将图像转化成的数字方块,但卷积核一般都是3×3或5×5的方块,3×3方块中有三个方块是有值得(即值为1),卷积核是计算机在学习的过程中,根据所得数据调节卷积核,卷积核可以有很多个。有了卷积核,我们就能通过在图形数字方块与卷积核之间做卷积运算,计算并得到特征图。
第一步卷积完成,得到初步的特征图。之后通过「池化」与「激活」,对特征图进行简化,也即对特征图中有特征部分(即有值部分)进行放大,这一步显然是为精准识别图形特征服务的。
要识别的图形越复杂,特征图得越精准,因此需要多次卷积、池化与激活。经过上述这些步骤,我们可以得到图像在各平面与维度中的特征,也可以得到轮廓、颜色等方面的特征。我们把这些特征信息接入计算机进行训练,就能判断这些众多特征图代表的图形是什么了。
当我们把那些特征信息/数据传输到计算机上,让它通过不断的「机器学习」,不断自行调整卷积核和参数,最终就能分辨出物体。这也是为什么,我们戴着口罩或眼睛,或者盖住一些脸部器官也能被机器所识别,这还是因为计算机早就收集到了我们足够多的面部特征。(了解更多人脸识别智慧解决方案,欢迎咨询汉玛智慧 )
科技融入生活,是我们大家都非常喜闻乐见的事情,同时,科技也改变了许多我们的工作生活方式,当然也有不少的科学技术是因为时代的背景应运而生,就好像在疫情期间出现的各种“数字哨兵”人脸识别健康码一体式设备。而我们 汉玛智慧 作为人脸识别设备和解决方案的生产厂家,也希望和大家一起努力,让更方便的科技为我们的生活增添色彩!
原文出自于 汉玛智慧 希望可以帮得到您,谢谢!
首先,和其他服务器一样,GPU服务器能够为我们提供数据和信息服务,而其深度学习的能力使得它可以支持N个处理器共同运作,相当于几十台PC机的运作能力;同时还具有超强的扩展能力,可根据企业的真实需求设计出精准的解决方案,充分满足不同应用场景的需求。
其次,GPU服务器采用特殊的人工智能产品阵列,可以实现更高级的功能。例如GPU服务器在语音识别、图像处理、视频成像、语义识别等领域就有着很突出的优势,特别是在数据中心计算领域取得了相当的成绩。GPU服务器能够提供多方面的数据计算,包括档案、市场细分、类型划分等等,通过特定的分析,为企业提供有针对性的发展建议。
第三,GPU服务器本身的核心优势之一——代替部分人工也以被很多企业所认可,逐步被运用在金融、教育、制造、交通等多种行业,相信在未来,GPU服务器会覆盖更多的行业,通过自身的优势,为企业提高效率、降低成本、减少能耗。
服务器市场正在走向AI时代,加速的集成、机器学习、深度学习等工作负载成为GPU服务器区别于以往的标签,人工智能的核心是机器学习,使计算机具有智能的根本途径也是机器学习。借助AI服务器,机器学习的应用场景将会越来越广泛,比如图像识别、自然语言处理、医疗诊断、市场分析、故障检测······未来,人工智能会拥有更强大的性能,更高的商业价值,为人类带来便捷。
参考链接:GPU服务器适用的领域有哪些?
图像识别和智能终端研发是紧密联系在一起的。越来越多的智能终端,包括智能手机、服务器和盒子等,都需要图像识别技术的支持。智能终端的研发都需要与图像识别技术的结合,以实现智能化和生物特征识别等功能,从而提升终端的智能应用,满足客户需求。随着智能终端、虚拟现实、机器人等技术的发展,图像识别技术也将助力智能终端的研发,将用户 *** 作界面和计算机交互的便捷性提升至更高的境界,从而提升智能化程度。交换机视频分析识别系统
关键字:AI视频行为识别分析系统、AI视觉分析系统、AI图像识别分析系统、AI识别系统、AI行为分析系统
概述
背景
人工智能大时代背景下,视频应用领域相关的行业应用方式已经发生了深刻的变化,各论安防监控还是各类垂直行业视频应用,都需要AI视觉分析与识别技术助力,而且需求广泛而迫切。在应用层面,以AI分析识别技术为核心,集传统视频监控和行业相应传感器/预警等设备一并接入管理并相互联动的一体化综合管理成了刚性应用需求,由此,深圳融合永道科技有限公司早在2012年就已以此方向,研发新一代AI智能视频一体化平台软件,深挖行业需求,响应时代号角,向AI领域进军。
目标
本平台在我司AI-MIS分析识别算法中间件为核心的技术框架下,以AI人工智能机器视觉技术为支撑,以AI视频应用为核心,把实现客户需求为目标。细化应用规则,在良好的横向业务应用规则扩展支持的同时,又重视纵向的技术深度化研发。持续研发适配更多的场景业务,为社会治安治理、保障安全生产提供有力的技术手段。
系统架构您好,学习机器视觉不一定需要有服务器,但是对于大规模的数据处理和模型训练,服务器可以提供更好的计算性能和存储资源,从而加快学习速度和提高模型的准确性。
在学习机器视觉的过程中,需要大量的数据集和算力来训练模型。如果使用个人电脑进行训练,可能会面临计算速度慢、内存不足等问题,而服务器可以提供更好的硬件资源来支持数据处理和模型训练。
另外,服务器还可以提供更好的数据安全性和可靠性。如果将数据存储在个人电脑中,可能会面临数据丢失或泄露的风险,而服务器可以提供更好的数据备份和安全措施,保障数据的安全性和可靠性。
综上所述,学习机器视觉不一定需要有服务器,但是服务器可以提供更好的计算性能、存储资源、数据安全性和可靠性,从而提高学习效率和保障数据安全。说到训练推理性能优越的服务器,就不得不提浪潮服务器NF5488A5。它曾屡次打破全球权威AI测试榜单MLPerf的记录,基于ImageNet的ResNet50基准测试显示,NF5488A5完成训练仅需3337分钟,单机性能高居第一;推理性能达到每秒549万张,3倍于去年推理榜单的服务器最好性能。然后,在GTC China元脑生态技术论坛上,中科极限元、趋动科技、睿沿科技等元脑生态伙伴分享了多个场景下浪潮AI服务器NF5488A5的实测数据,结果表明浪潮NF5488A5大幅提升了智能语音、图像识别等AI模型的训练和推理性能,促进了产业AI解决方案的开发与应用。这几款服务器都很不错,各有各的优点,好的服务器有很多,推荐一款性价比比较高的服务器,亿万克,这个牌子是几十年的老牌子了,在服务器这方面比较专业。
亿万克,性价比高,亿万克持续技术创新,构建智能、高效、绿色的ICT基础设施,实现以大数据中心、人工智能、工业互联网等新型基础设施为牵引,依托云计算、大数据、人工智能等技术,形成丰富、先进的解决方案与服务体系,助力区域、行业数字经济发展与数字中国建设。
亿万克国产服务器,国产自主可控服务器,自主可控、国产芯片、国产化替代; 国产飞腾,海光,龙芯,兆芯服务器产品。以多样化产品方案设计能力服务客户,AI服务器,体积小、易维护。适用于智慧城市、环境监测、图像识别、视觉检测等;有保障,值得信赖。
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)