1、离线采集:工具:ETL;在数据仓库的语境下,ETL基本上就是数据采集的代表,包括数据的提取(Extract)、转换(Transform)和加载(Load)。在转换的过程中,需要针对具体的业务场景对数据进行治理,例如进行非法数据监测与过滤、格式转换与数据规范化、数据替换、保证数据完整性等。
2、实时采集:工具:Flume/Kafka;实时采集主要用在考虑流处理的业务场景,比如,用于记录数据源的执行的各种 *** 作活动,比如网络监控的流量管理、金融应用的股票记账和 web 服务器记录的用户访问行为。在流处理场景,数据采集会成为Kafka的消费者,就像一个水坝一般将上游源源不断的数据拦截住,然后根据业务场景做对应的处理(例如去重、去噪、中间计算等),之后再写入到对应的数据存储中。这个过程类似传统的ETL,但它是流式的处理方式,而非定时的批处理Job,些工具均采用分布式架构,能满足每秒数百MB的日志数据采集和传输需求。
3、互联网采集:工具:Crawler, DPI等;Scribe是Facebook开发的数据(日志)收集系统。又被称为网页蜘蛛,网络机器人,是一种按照一定的规则,自动地抓取万维网信息的程序或者脚本,它支持、音频、视频等文件或附件的采集。爬虫除了网络中包含的内容之外,对于网络流量的采集可以使用DPI或DFI等带宽管理技术进行处理。
4、其他数据采集方法对于企业生产经营数据上的客户数据,财务数据等保密性要求较高的数据,可以通过与数据技术服务商合作,使用特定系统接口等相关方式采集数据。比如八度云计算的数企BDSaaS,无论是数据采集技术、BI数据分析,还是数据的安全性和保密性,都做得很好。数据的采集是挖掘数据价值的第一步,当数据量越来越大时,可提取出来的有用数据必然也就更多。只要善用数据化处理平台,便能够保证数据分析结果的有效性,助力企业实现数据驱动。
1、设备类:
指从传感器和其它待测设备等模拟和数字被测单元中自动采集信息的过程。数据采集系统是结合基于计算机的测量软硬件产品来实现灵活的、用户自定义的测量系统。比如条码机、扫描仪等都是数据采集工具(系统)。
2、网络类:
用来批量采集网页,论坛等的内容,直接保存到数据库或发布到网络的一种信息化工具。可以根据用户设定的规则自动采集原网页,获取格式网页中需要的内容,也可以对数据进行处理。
数据采集系统包括了:可视化的报表定义、审核关系的定义、报表的审批和发布、数据填报、数据预处理、数据评审、综合查询统计等功能模块。
通过信息采集网络化和数字化,扩大数据采集的覆盖范围,提高审核工作的全面性、及时性和准确性;最终实现相关业务工作管理现代化、程序规范化、决策科学化,服务网络化。
扩展资料
数据采集系统特点:
a、数据采集通用性较强。不仅可采集电气量,亦可采集非电气量。电气参数采集用交流离散采样,非电气参数采集采用继电器巡测,信号处理由高精度隔离运算放大器AD202JY调理,线性度好,精度高。
b、整个系统采用分布式结构,软、硬件均采用了模块化设计。数据采集部分采用自行开发的带光隔离的RS-485网,通信效率高,安全性好,结构简单。
后台系统可根据实际被监控系统规模大小及要求,构成485网、Novell网及WindowsNT网等分布式网络。由于软、硬件均为分布式、模块化结构,因而便于系统升级、维护,且根据需要组成不同的系统。
c、数据处理在WindowsNT平台上采用VisualC++语言编程,处理能力强、速度快、界面友好,可实现网络数据共享。
d、整个系统自行开发,符合我国国情。对发电厂原有系统的改动很小,系统造价较低,比较适合中小型发电厂技术改造需要。
参考资料来源:百度百科-数据采集系统
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)