gromacs怎么做蛋白质之间的分子动力学

gromacs怎么做蛋白质之间的分子动力学,第1张

gromacs能模拟蛋白质和蛋白质相互作用
蛋白质相互作用的预测方法很非常多,以下作了简单的介绍
1) 系统发生谱
这个方法基于如下假定:功能相关的(functionally related)基因,在一组完全测序的基因组中预期同时存在或不存在,这种存在或不存在的模式(pattern)被称作系统发育谱;如果两个基因,它们的序列没有同源性,但它们的系统发育谱一致或相似.可以推断它们在功能上是相关的。
2
2) 基因邻接
这个方法的依据是,在细菌基因组中,功能相关的基因紧密连锁地存在于一个特定区域,构成一个 *** 纵子,这种基因之间的邻接关系,在物种演化过程种具有保守性,可以作为基因产物之间功能关系的指示。这个方法似乎只能适用于进化早期的结构简单的微生物。所以在人的蛋白质相互作用预测时不采用这个方法。
3) 基因融合事件
这个方法基于如下假定:由于在物种演化过程中发生了基因融合事件,一个物种的两个(或多个)相互作用的蛋白,在另一个物种中融合成为一条多肽链, 因而基因融合事件可以作为蛋白质功能相关或相互作用的指示。
4) 镜像树
这个方法的思想是,功能相关的蛋白质或同一个蛋白的域之间,受功能约束,其进化过程应该保持一致, 即呈现共进化(CO—evolution)特征,通过构建和比较它们的系统发育树,如果发现树的拓扑结构显示相似性,这种相似的树被称作镜像树,那么,可以推测建树基因的功能是相关的。
5) 突变关联
物理上相互接触的蛋白质, 比如处在同一个结构复合物中的蛋白质,其中一个蛋白质在进化过程中累计的残基变化,通过在另一个蛋白质中发生相应的变化予以补偿,这种现象被称作关联突变。

一、 计算的可靠性  

计算是否可靠?要考虑三个方面。

算法方面 。为了实现分子动力学的模拟,采用了数值计算方法,在长时间的计算后必然会有误差的累积,所以算法如果不能满足两个条件就会导致体系总能量出现明显漂移(drifts)。即算法需要满足:

(1)time-reversibilitysymmetry;

(2)symplecticproperty。

计算精度。 除了算法,对于体系的能量和力的计算精度是否足够精确和充分,也是对计算可靠性有重要影响的。

体系的初始化设置 。体系初始化良好,可以减少数据冗余以及有利于得到可靠结果。主要有五点:

(1)体系原子数目。选择的原子数应当尽量反映真实体系的特点而数目尽可能少。

(2)位置和速度初始化。原子的位置可以是随机的,但不能与体系的约束条件有冲突,也要避免原子靠得太近。速度的初始化,可以将速度设为0,然后在一个给定的温度下从一个麦克斯韦-玻尔兹曼分布抽样得到速度。在体系没有特殊的约束条件下,通过从此种分布中得到的速度不会与体系约束条件冲突。此外,在速度初始化时,一般取体系质心速度为零,以避免体系在空间中出现整体漂移。

(3)时间步长。数值积分,步长选取很重要,因为要在每一积分步中,将各个需要计算的量当作常量,才能进行代数运算,由F= - dU/dr,变化较大较快的应当作为整体考虑的依据。原子振动周期在10fs量级,一般将其分成5~10步,如有更高精度要求,可以将步长设置更短,所以时间步长一般设置在01fs到几个fs之间。通常小的时间步提高了计算精度,增加了计算量,长的时间步则反之。如果总能变得不稳定(漂移或者涨落过大),这表明可能是时间步长过长导致。在高温下,原子运动相对要快些,质量轻的,或者势场变化很快的,一般需要设置更短的时间步长。

(4)模拟的总时间长度。一般总的模拟时间为10^3~10^6个时间步长。总的模拟时间要确保比体系的充分弛豫时间长以使数据可靠,按网上论坛的经验,一般应当至少为体系充分弛豫时间的3倍。对于一些特殊情况,如相变,气相沉积,晶体生长等,平衡很慢,就需要保证总的模拟时间足够长。

(5)系综的选择。此问题可以参考做的领域的相关文献,或者与实验比较。小木虫等论坛也有讨论。

 

二、系综问题

分子动力学中关键的概念之一为系综(ensemble)。Ensemble—an imaginary collection of systemsdescribed by the same Hamiltonian with each system in a unique microscopicstate at any given instant in time。系综是指在一定的宏观条件下(约束条件),大量性质和结构完全相同的、处于各种运动状态的、各自独立的系统的集合。全称为统计系综。系综是用统计方法描述热力学系统的统计规律性时引入的一个基本概念;系综是统计理论的一种表述方式,系综理论使统计物理成为普遍的微观统计理论 ;系综并不是实际的物体,构成系综的系统才是实际物体。

类似在音乐领域中,各乐器各有特点,但一起协奏之后会形成一个特别的整体效果。分子动力学中的原子行为不尽相同,但在适当的模拟和平衡后,也会有一个整体的效果而具有相同的热力学性质。

常用系综有微正则系综,正则系综,巨正则系综,等温等压系综等,微正则系综为最简单和最基础的一种,其他系综的研究过程可参照得到。在热力学极限下,各系综是等价的,但是在实际的模拟中,大多数情况是远远达不到热力学极限的,因此能量的涨落(fluctuations)不能消失,有时候根据实际情况选择系综是有必要的。

从理论上来讲,使用NVE系综对于体系的计算肯定是最为理想的。但是使用NVE系综,体系的温度取决于初始条件,导致温度不可控,直接使用NVE系综则温度难以达到预期。可以先使用NVT系综控温,进行体系的预平衡,然后再用NVT系综平衡下的状态作为NVE系综的初始条件,进行计算。这样在NVE系综下跑,体系的温度就能在一个可以接受的情况下波动。
2018-06-14

分子动力学可以用于NPT,NVE,NVT等系综的计算,是一种基于牛顿力学确定论的热力学计算方法,可以广泛应用于物理,化学,生物,材料,医学等各个领域。
目前由于计算机性能的限制,其可计算的尺寸还很小,一般计算的粒子数会不会超过5位数,计算的尺寸一般只有几十纳米甚至更小
基本过程:
确定起始构型
进行分子动力学模拟的第一步是确定起始构型, 一个能量较低的起始构型是进行分子模拟的基础 ,一般分子的起始构型主要来自实验数据或量子化学计算。在确定起始构型之后要赋予构成分子的各个原子速度,这一速度是根据玻尔兹曼分布随机生成的,由于速度的分布符合玻尔兹曼统计,因此在这个阶段,体系的温度是恒定的。另外,在随机生成各个原子的运动速度之后须进行调整,使得体系总体在各个方向上的动量之和为零,即保证体系没有平动位移。
进入平衡相
由上一步确定的分子组建平衡相,在构建平衡相的时候会对构型、温度等参数加以监控。
进入生产相
进入生产相之后体系中的分子和分子中的原子开始根据初始速度运动,可以想象其间会发生吸引、排斥乃至碰撞,这时就根据牛顿力学和预先给定的粒子间相互作用势来对各个粒子的运动轨迹进行计算,在这个过程中,体系总能量不变,但分子内部势能和动能不断相互转化,从而体系的温度也不断变化,在整个过程中,体系会遍历势能面上的各个点(理论上,如果模拟时间无限)。计算分析所用样本正是从这个过程中抽取的。
计算结果用抽样所得体系的各个状态计算当时体系的势能,进而计算构型积分。

AIMD和分子动力学的区别:含义不同,计算不同。

一、含义不同:量子化学一般是基于量子力学对化学体系中涉及电子结构或者电子层面的机理等进行研究,其基本原理是基于量子力学,然后求解H-F方程。而分子动力学是基于经典力学进行的计算,主要考虑的是原子层面的问题。

二、计算不同:量子化学一般指以求解H-F方程为主的计算化学,其求解的体系一般在300个原子左右,有人把DFT也算到量子化学体系里面,计算的体系就会有所增加,比如castep/VASP等软件,1000个原子左右或者以下。

计算结果

用抽样所得体系的各个状态计算当时体系的势能,进而计算构型积分。作用势与动力学计算作用势的选择与动力学计算的关系极为密切,选择不同的作用势,体系的势能面会有不同的形状,动力学计算所得的分子运动 和 分子内部运动的轨迹也会不同,进而影响到抽样的结果和抽样结果的势能计算。

百度百科-分子动力学

分子动力学是一门结合物理,数学和化学的综合技术。分子动力学是一套分子模拟方法,该方法主要是依靠牛顿力学来模拟分子体系的运动,以在由分子体系的不同状态构成的系统中抽取样本,从而计算体系的构型积分,并以构型积分的结果为基础进一步计算体系的热力学量和其他宏观性质。
进行分子动力学模拟的第一步是确定起始构型,一个能量较低的起始构型是进行分子模拟的基础,一般分子的起始构型主要来自实验数据或量子化学计算。在确定起始构型之后要赋予构成分子的各个原子速度,这一速度是根据波尔兹曼分布随机生成的,由于速度的分布符合波尔兹曼统计,因此在这个阶段,体系的温度是恒定的。


欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/zz/13044623.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-05-29
下一篇 2023-05-29

发表评论

登录后才能评论

评论列表(0条)

保存