在本地运行深度学习任务的主要优点是可以对计算机进行更好的控制,可以使用自己的硬件和软件。此外,本地计算机可以更好地保护数据的隐私和安全性。但是,本地计算机的计算能力和存储空间通常受限,因此可能无法满足大规模深度学习任务的需求。
使用服务器或云计算平台运行深度学习任务的主要优点是可以获得更高的计算能力和更大的存储空间。此外,使用云计算平台可以根据需要调整计算资源的规模,从而更好地应对不同规模的深度学习任务。但是,使用云计算平台需要支付相应的费用,并且需要注意数据隐私和安全性的保护。需要安装。
1。安装系统。1。安装ubuntu。具体安装省略,记录一个小bug,可能在给有独立显卡的台式机安装ubuntu双系统时遇到:在安装时,使用U盘启动这步,直接选择tryubuntu或installubuntu都会出现黑屏的问题。解决方法:将光标移动到installubuntu一项上,按e键,会进入一个可编辑的界面,将quietsplash修改为nouveau。modeset=0nomodeset,然后按ctrl+x进入安装。之后在ubuntu安装nvidia驱动后,就正常了。如果没有安装驱动,每次进入前,都要用同样的方法将上面的quietsplash修改。2。配置nvidia显卡。具体分为两步:安装nvidia驱动,如果是图形界面的话,在Software&Updates中的AdditionalDrivers中选择合适的驱动安装即可。在官网下载cudnn并安装。2。创建和登录用户。在linux上创建自己的用户,方便管理代码和安装应用。比如我们想要创建一个用户名是haha,密码是123456的用户,命令如下:添加用户:useradd-d/home/haha-mhaha。设置密码(只有设置密码之后,才能登录用户):passwdhaha,然后输入密码。然后就可以通过sshhaha@your_ip的方式登录服务器了。登录后也可以设置bash:chsh-s/bin/bash或修改为zsh。加入root权限:使用apt下载时,如果出现不在sudoers文件中的报错,则需要将用户加入sudoers,执行sudovim/etc/sudoers命令,rootALL=(ALL)ALL的下一行加入hahaALL=(ALL)ALL,然后保存。删除用户:userdel-rhaha。做深度学习的话,我还是可以有立场说些的。因为我们实验室当时就遇到了这些问题,选择深度学习GPU显卡时建议选择专门做液冷的A100或者RTX3090、RTXA6000、RTXA40等卡,蓝海大脑的液冷GPU服务器具有高性能,高密度⌄扩展性强等特点。液冷GPU服务器产品支持1~20块 GPU卡,还可以选择,毕竟能可以选择也是很好的,芯片主要采用龙芯、飞腾、申威、海光、英伟达、Intel、AMD。完全定制啊,敲开心。适用于深度学习训练及推理、生命科学、医药研发、虚拟仿真等场景,覆盖服务器、静音工作站、数据中心等多种产品形态,量身定制,满足客户全场景需求。技术人员给的建议都非常受用。珍岛GPU云服务器。
珍岛GPU云服务器适用于深度学习,针对AI,数据分析在各种规模上实现出色的加速,应对极其严峻的计算挑战,同时珍岛云提供多种GPU实例规格。
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)