1,处理器,性能和稳定有区别
2,内存,服务器的带ECC校验
3,硬盘,服务器的有SCSI,SAS盘,转速为15000转而PC机的只有7200转
4,机箱,托管到机房的时候,收费是按机箱的大小收费所以需要托管到机房的服务器大多都是1U
专业的服务器产品可以看国产服务器品牌正睿的官方网站,他们的产品性价比很高,售后也很完善,5年质保,在业界口碑很不错
>虚拟化与刀片是近年来非常热门的两项技术,虽然一个是软件,一个是硬件,但是有异曲同工之处,都是为了更灵活地利用服务器资源,更方便、统一地管理系统,并且降低服务器对电力、散热,空间方面的需求。刀片服务器在某种程度上更符合虚拟化技术的思维方式,也更有利于虚拟化技术的部署和应用。下面我们就通过两个实例了解刀片系统在虚拟化方面的应用效果。
悉尼歌剧院――虚拟化及机房空空间管理
无论是在文化还是建筑方面看,悉尼歌剧院都是澳大利亚的图标。由丹麦建筑师所设计的悉尼歌剧院是世界著名的旅游景点,每年吸引着大量的游客。
20年来,作为悉尼歌剧院技术合作伙伴,惠普公司一直在帮助歌剧院获得出色的性能。当剧院的票务系统在处理大型销售活动时变得不可靠时,惠普采用HPBladeSystem帮助悉尼歌剧院建立了一个先进的IT设施。
2000年,悉尼歌剧院发布了其第一个网站,并开始进行网上售票。它将网站托管外包给第三方供应商了一段时间。随着越来越多的顾客开始网上买票,网站的服务和可靠性开始显露不足。
“该网站将完全瘫痪,或者客户需要忍受非常缓慢的反应时间。”悉尼歌剧院信患系统总监ClaireSwaffield说。“我们不仅在失去可信度,而且对于那些人们希望在线购票的大型活动来说,人们希望能在开始售票的前15分钟买到最好的门票。但是,我们无法提供这样的服务。因此,我们业务遭受到损失。”
悉尼歌剧院决定推出一个新网站,采用Tessitura软件处理票务和客户关系管理,同时采用新的惠普公司的硬件,为了支持新的票务系统,悉尼歌剧院购买了一台HP BladeSystem c7000机箱,以及10台HPProLiant BL460c刀片服务器,其中9台投入使用,另外一台作为备用。外型“小巧”的HP BladeSystem让悉尼歌剧院可以使其数据中心占用的空间最小化,留下更多空间用于表演和公共空间。
“对于悉尼歌剧院的环境而言,HP BladeSystem堪称完美。”Swaffield说,“我们的数据中心空间相当有限,而且我们非常在意对电力和散热的需求。HPBladeSystem在一个非常小的“盒子”里提供了大量的电源和可扩展性,我们已经看到在营运成本方面有着显著的减少。”
使用HP Onboard Administrator and HP IntegratedLights-Out 2 (iLO 2)等工具,IT人员可以从任何地点通过互联网接入,对系统进行远程管理。HPStorageWorks 6000企业虚拟阵列(EVA)提供了集中式的存储,惠普StorageWorks MSL6000磁带库和HP数据保护软件能够进行安全,集中的数据备份。
Sydneyoperahousecom现在可以承受以往20倍的访问量,同时,Tessitura软件提供了增强的能力,不仅可以跟踪客户活动,并且可以吸引赞助商对未来的演出活动的关注。
“与过去相比,我们已经可以为客户提供更多的个性化服务,”Swaffield说。”现在,我们可以为客户定制其感兴趣的相关信息。我们和客户间的互动方式完全改变了。由于Tessitura是一个与我们的网站完全集成的解决方案,它使我们的客户数据库在2年多的时间里扩大了三倍。每当有重要表演在悉尼歌剧院演出时,我们通过客户数据库进行市场推广,都会产生巨大的影响。”
在2006年到2008年间担任悉尼歌剧院市场营销和拓展总监的Naomi Grabe,非常同意上述说法。“和惠普这样的技术合作伙伴合作,我们的营销功能变得容易。我们现有的技术基础设施使得我们能够与我们的客户建立持续的关系,”采用HP BladeSystem后,门票的网上销售比例高达62%。
由于HP BladeSystem所提供的能力和可扩展性,悉尼歌剧院决定通过采用VMware ESX Server 35虚拟化软件使其对硬件投入回报最大化。
“BladeSystem和虚拟化方式的结合,带给我们部署新系统时速度的提高,”Swaffield说。“在采用虚拟化环境前,需要两天或两天以上的时间部署新服务器。现在,我们可以在两个小时内部署一台机器。速度提高80%以上,,到目前为止,悉尼歌剧院已经有了虚拟化的域控制器,打印服务器和黑莓企业服务器,并且将目标定为对所有机器进行虚拟化。
由于与惠普公司创造性的伙伴关系,使得悉尼歌剧院对于未来的增长和销售活动充满信心。它将能够提供新的服务,例如允许顾客从通过歌剧院网站选择自己的座位等。
“惠普公司在悉尼的团队真正关心悉尼歌剧院,”Swaffield说:“他们总是提前考虑以求真正理解我们的战略方向,然后帮助我们用技术实现这些业务需求。”
硬石公园――电源及散热虚拟化
位于美国南卡罗莱纳州的硬石公园于2008年6月开业。该公园耗资近5亿美元,是美国近年来最野心勃勃的娱乐公园项目。
硬石公园美国IT高级总监大卫,蒙托亚在为硬石公园选择基础硬件,即服务器、备份存储,PC机及POS系统,他需要一个有实力的技术合作伙伴。“根据我过去的经验,我很愿意和惠普公司合作。”他说,“我一直喜欢HP的平台。”通过技术顾问公司――BayshoreTechnologles的帮助,硬石公园和HP达成了合作协议,“Basyshore公司向我们展示了惠普性能和成本方面具有最佳价值。”蒙托亚说。“我也知道,Bayshore公司与惠普公司有着长期的合作关系,因此我们能获得的支持就会将是首屈一指的。”
通过在其数据中心内采用HP BladeSystem和VMware的虚拟软件,硬石公园能够降服务器的数量。通过对除了电子邮件外的所有业务应用虚拟化,蒙托亚能够把整个服务器基础设施集中到2个服务器机架内,这样就节省了空间,使得对功耗和散热的要求最小化。
Bayshore建议采用两台HP BladeSystem c7000进行完全容错,每台c7000配备基于双核英特尔至强处理器的HP ProLiant BL460c刀片服务器,两台HP ProLiantDL380服务器运行公园的Microsoft Dynamics SL财务应用。一台HP StorageWorks MSL4048磁带库用于备份,
HP BladeSystem的精心设计带给硬石公园性能,可扩展性和模块化。VMware公司是解决办法的重要组成部分之一,如果没有虚拟化,硬石公园将需要40台物理服务器。但当采用VMware后,他们在每台刀片上运行约8台虚拟服务器,并且还有足够的空间增加更多。
现在,蒙托亚可以在晚上睡个好觉了。因为他知道,如果服务器出现什么故障,IT人员可以通过远程访问服务器,解决疑难问题,并在必要时重新启动,惠普的远程管理工具――HP Integrated Lights-Out 2(iL02)and Onboard Administrator在很多情况下帮助了IT工程师们,减少了在服务器机房间的走动,
采用HP BladeSystem,因为惠普独有的虚拟连接技术,综合布线的费用和对端口的要求也降低百分之五十。所有这些都会导致较少的人力,更低的成本。且释放出端口作其他用途。蒙托亚说,惠普的硬件已达到对高可用性的需求。“采用HP服务器,我们还没有任何无计划停机。”蒙托亚说。“如果我们需要为一台刀片增加内存或硬盘驱动器片,我们可以只使用VMotion把虚拟服务器从该刀片转移到另一台上,无需停机。”
HP ProLiant460c刀片服务器采用了英特尔至强5400系列处理器。该处理器与前代双核和单核处理器相比,性能提升分别达2倍和5倍:与前代四核产品相比,性能提升20%,性能功耗比提升28%。
此外,5400系列所提供特色还包括:英特尔虚拟化技术(英特尔VT)支持在当今虚拟环境下运行多种 *** 作系统和软件,英特尔与虚拟化软件提供商共同开发,提供比非硬件辅助虚拟环境更出色的功能和兼容性;出色的灵活性,支持64位和32位应用及 *** 作系统全缓冲DOMM 技术与以前的内存技术相比,高达21GB/秒的内存带宽实现了三倍提升,内存容量实现四倍提高,高达64GB,增强的可靠性、可用性和可维护性;英特尔I/O加速技术(英特尔I/OAT)更高效地移动网络数据,实现快速,可扩充的可靠网络,能够显著降低CPU开销,释放更多资源用于处理关键任务增强的可靠性和可管理性众多内存控制器的特性与PCI Express RAS特性相结合,可带来比前代平台显著改进的可靠性,以及其他全新特性,包括纠错码(ECC)系统总线,全新内存镜像和I/O热插拔等。服务器没装满硬盘影响散热
服务器系统硬盘为机器运行的根本,系统工作的可靠性已经成为机器应用平台正常稳定运行的先决条件,在服务器应用过程中,保证服务器系统的稳定,机器的高效运行是目前产品测试工作的主要验证项,因此,合理的散热布局、是否拥有良好的散热通道及散热效果是服务器系统硬盘正常工作的基础。
现有的服务器系统硬盘主要布局位置大部分为安装在机箱后端的两侧或者前端,机箱内部散热结构简单,内部风道具有较高的不通畅性,不能完全发挥散热风扇的散热作用,被动散热效果差且无法有效的进行系统盘热量的散出,从而降低了服务器系统硬盘稳定性和可靠性。
技术实现要素:
本实用新型的目的是克服现有技术中的不足,提供一种用于服务器系统硬盘散热装置,通过改变服务器系统硬盘安装位置及设置挡风罩,提高内部风道流畅度,保证了服务器系统硬盘工作时能够进行有效的散热,保证服务器系统硬盘保持在合理的工作环境温度,提高服务器应用平台的工作稳定性。
为了实现上述目的,本实用新型采用的技术方案是:
一种用于服务器系统硬盘散热装置,包括机箱、风扇模组、服务器系统硬盘、挡风罩,所述风扇模组、服务器系统硬盘、挡风罩均安装在机箱上,所述挡风罩设置于风扇模组与服务器系统硬盘之间,服务器系统硬盘位于挡风罩一侧中部,所述挡风罩包括罩体、挡风板、第一侧板、第二侧板,所述第一侧板、第二侧板分别设置于罩体顶部下方中部两侧,所述挡风板设置于第一侧板、第二侧板底部并与第一侧板、第二侧板连接,通过挡风板将罩体与机箱分割成上下两个风道,其中挡风板与罩体顶部之间为上风道,通过上风道为服务器系统硬盘模组提供散热通道,挡风板与机箱之间为下风道,通过下风道为为cpu、内存等部件提供散热通道,所述第一侧板、第二侧板与罩体端部之间形成侧风道,通过侧风道为电源模块与pcie卡提供散热通道,通过风扇模组工作产生的风量进入到挡风罩中不同的风道中,对机箱中不同的元器件进行散热,通过上风道为服务器系统硬盘提供一个单独的风道,可以保证散热风量足够,确保服务器系统硬盘工作时的热量及时散出,从而保证服务器系统硬盘保持在合理的工作环境温度,提高服务器应用平台的工作稳定性。
优选的,所述罩体顶部靠近风扇模组一侧设有凹槽,风扇模组上对应设有凸起,通过凹槽与凸起的配合,可以对挡风罩实现快速安装与定位,提高了挡风罩安装的工作效率。
优选的,所述罩体顶部靠近风扇模组一侧设有第一通孔,通过第一通孔将挡风罩固定安装到风扇模组顶部,防止风扇模组工作进行吹风时将挡风罩吹动发生位移,影响散热效果,从而保证了挡风罩的实用性。
优选的,所述罩体上的两端设有通风孔,所述通风孔分别位于第一侧板、第二侧板的一侧,风扇模组工作时产生的风量可以通过通风孔对电源模块与pcie卡进行有效的散热,提高了散热的效率。
优选的,所述第二侧板的一侧设有侧挡板,所述侧挡板固定安装在罩体上,通过可以保证风量在通风孔出来后,能够直接有效的作用到pcie卡表面,保证了pcie卡散热效果。
优选的,所述第一侧板上设有通槽,所述第二侧板上设有线缆卡扣,通过通槽与线缆卡扣将线缆在挡风罩表面进行有序的排列及可靠的固定,提高了机箱内部的整洁度和可靠度。
优选的,所述挡风板上设有元器件放置框,所述元器件放置框的数量为两个,元器件放置框用于放置bbu电池或其它元器件,提高了机箱内部空间利用率。
优选的,所述元器件放置框底部两侧设有第二通孔,第二通孔用于绳子穿过固定元器件放置框内部的元器件,从而提高了元器件放置框内部的元器件工作时的稳定性。
优选的,所述元器件放置框内侧与外侧均设有加强筋,增强了挡风罩的强度,延长挡风罩使用寿命。
优选的,所述第一侧板、第二侧板的端部设有止回板,所述止回板位于罩体顶部下方,通过止回板防止风扇模组工作时出现漏风现象,产生的风量经由挡风板吹向服务器系统硬盘,提高了风扇模组的工作效率。
本实用新型的有益效果是:
1)通过改变服务器系统硬盘安装位置及设置挡风罩,提高内部风道流畅度,保证了服务器系统硬盘工作时能够进行有效的散热,保证服务器系统硬盘保持在合理的工作环境温度,提高服务器应用平台的工作稳定性。
2)罩体顶部靠近风扇模组一侧设有凹槽,风扇模组上对应设有凸起,通过凹槽与凸起的配合,可以对挡风罩实现快速安装与定位,提高了挡风罩安装的工作效率。
3)罩体顶部靠近风扇模组一侧设有第一通孔,通过第一通孔将挡风罩固定安装到风扇模组顶部,防止风扇模组工作进行吹风时将挡风罩吹动发生位移,影响散热效果,从而保证了挡风罩的实用性。
4)罩体上的两端设有通风孔,所述通风孔分别位于第一侧板、第二侧板的一侧,风扇模组工作时产生的风量可以通过通风孔对电源模块与pcie卡进行有效的散热,提高了散热的效率。
5)第二侧板的一侧设有侧挡板,所述侧挡板固定安装在罩体上,通过可以保证风量在通风孔出来后,能够直接有效的作用到pcie卡表面,保证了pcie卡散热效果。
6)第一侧板上设有通槽,所述第二侧板上设有线缆卡扣,通过通槽与线缆卡扣将线缆在挡风罩表面进行有序的排列及可靠的固定,提高了机箱内部的整洁度和可靠度。
7)挡风板上设有元器件放置框,所述元器件放置框的数量为两个,元器件放置框用于放置bbu电池或其它元器件,提高了机箱内部空间利用率。
8)元器件放置框底部两侧设有第二通孔,第二通孔用于绳子穿过固定元器件放置框内部的元器件,从而提高了元器件放置框内部的元器件工作时的稳定性。
9)元器件放置框内侧与外侧均设有加强筋,增强了挡风罩的强度,延长挡风罩使用寿命。
10)第一侧板、第二侧板的端部设有止回板,所述止回板位于罩体顶部下方,通过止回板防止风扇模组工作时出现漏风现象,产生的风量经由挡风板吹向服务器系统硬盘,提高了风扇模组的工作效率。
附图说明
附图1是本实用新型一种用于服务器系统硬盘散热装置中结构示意图。
附图2是本实用新型一种用于服务器系统硬盘散热装置中挡风罩结构示意图。
附图3是本实用新型一种用于服务器系统硬盘散热装置中挡风罩另一侧结构示意图。
附图4是本实用新型一种用于服务器系统硬盘散热装置中挡风板结构示意图。
图中:1、罩体;2、第一通孔;3、凹槽;4、挡风板;5、第一侧板;6、侧挡板;7、通风孔;8、线缆卡扣;9、机箱;10、加强筋;11、元器件放置框;12、通槽;13、第二侧板;14、止回板;15、第二通孔;16、服务器系统硬盘;17、风扇模组。
具体实施方式
下面结合附图1-4,对本实用新型实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本实用新型一部分实施例,而不是全部的实施例。基于本实用新型中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本实用新型保护的范围。
在本实用新型的描述中,需要理解的是,术语“纵向”、“横向”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”、“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本实用新型,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和 *** 作,因此不能理解为对本实用新型的限制。
一种用于服务器系统硬盘散热装置,包括机箱9、风扇模组17、服务器系统硬盘16、挡风罩,所述风扇模组17、服务器系统硬盘16、挡风罩均安装在机箱9上,所述挡风罩设置于风扇模组17与服务器系统硬盘16之间,服务器系统硬盘16位于挡风罩一侧中部,所述挡风罩包括罩体1、挡风板4、第一侧板5、第二侧板13,所述第一侧板5、第二侧板13分别设置于罩体1顶部下方中部两侧,所述挡风板4设置于第一侧板5、第二侧板13底部并与第一侧板5、第二侧板13连接,通过挡风板4将罩体1与机箱9分割成上下两个风道,其中挡风板4与罩体1顶部之间为上风道,通过上风道为服务器系统硬盘16提供散热通道,挡风板4与机箱9之间为下风道,通过下风道为cpu、内存等部件提供散热通道,所述第一侧板5、第二侧板13与罩体1端部之间形成侧风道,通过侧风道为电源模块与pcie卡提供散热通道,通过风扇模组17工作产生的风量进入到挡风罩中不同的风道中,对机箱9中不同的元器件进行散热,通过上风道为服务器系统硬盘16提供一个单独的风道,可以保证散热风量足够,确保服务器系统硬盘16工作时的热量及时散出,从而保证服务器系统硬盘16保持在合理的工作环境温度,提高服务器应用平台的工作稳定性。
所述罩体1顶部靠近风扇模组17一侧设有凹槽3,风扇模组17上对应设有凸起,通过凹槽3与凸起的配合,可以对挡风罩实现快速安装与定位,提高了挡风罩安装的工作效率,所述罩体1顶部靠近风扇模组17一侧设有第一通孔2,通过第一通孔2将挡风罩固定安装到风扇模组17顶部,防止风扇模组17工作进行吹风时将挡风罩吹动发生位移,影响散热效果,从而保证了挡风罩的实用性,所述罩体1上的两端设有通风孔7,所述通风孔7分别位于第一侧板5、第二侧板13的一侧,风扇模组17工作时产生的风量可以通过通风孔7对电源模块与pcie卡进行有效的散热,提高了散热的效率,所述第二侧板13的一侧设有侧挡板6,所述侧挡板6固定安装在罩体1上,通过可以保证风量在通风孔7出来后,能够直接有效的作用到pcie卡表面,保证了pcie卡散热效果,所述第一侧板5上设有通槽12,所述第二侧板13上设有线缆卡扣8,通过通槽12与线缆卡扣8将线缆在挡风罩表面进行有序的排列及可靠的固定,提高了机箱9内部的整洁度和可靠度。
所述挡风板4上设有元器件放置框11,所述元器件放置框11的数量为两个,元器件放置框11用于放置bbu电池或其它元器件,提高了机箱9内部空间利用率,所述元器件放置框11底部两侧设有第二通孔15,第二通孔15用于绳子穿过固定元器件放置框11内部的元器件,从而提高了元器件放置框11内部的元器件工作时的稳定性,所述元器件放置框11内侧与外侧均设有加强筋10,增强了挡风罩的强度,延长挡风罩使用寿命,所述第一侧板5、第二侧板13的端部设有止回板14,所述止回板14位于罩体1顶部下方,通过止回板14防止风扇模组17工作时出现漏风现象,产生的风量经由挡风板吹向服务器系统硬盘16,提高了风扇模组17的工作效率。
以上内容仅仅是对本实用新型的结构所作的举例和说明,所属本技术领域的技术人员对所描述的具体实施例做各种各样的修改或补充或采用类似的方式替代,只要不偏离实用新型的结构或者超越本权利要求书所定义的范围,均应属于本实用新型的保护范围。机房机柜内部设备安装顺序要求如下:
(1)主机、存储设备、服务器机柜宜分区布置,主机、存储设备、服务器机柜及UPS、空调机等设备应按产品要求留出检修空间,允许相邻设备的维修间距部分重叠。
(2)合理规化分阶段进入机房的设备及预留扩充设备的相对位置,既要符合计算机系统的工艺流程,又要方便今后扩充设备的进场就位及线缆的连接。
(3)放置发热量较大的服务器如IBM690、670等服务器机柜时,其机柜前面之间的净距离不应小于21米,以免热密度太高从而影响设备的散热。
(4)设备较多的服务器机房建议列头柜方式,使综合布线线缆汇集到列头柜而不是核心柜从而节省双绞线与光纤,同时便于使用二级网络交换设备,也便于安装使用服务于某列机柜的KVM系统。
(5)鉴于市场上主流服务器及服务器机柜的散热方式大多数为前后向通风方式,因此前后向通风的服务器机柜宜采用面对面、背靠背的布置方式。在机柜正面布置地板送风口,使气流形成冷热通道,以减少前排机柜排出的热气流对后排机柜的影响,充分发挥空调系统的效能。
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)