主频也叫时钟频率,单位是MHz,用来表示CPU的运算速度。CPU的主频=外频×倍频系数。很多人认为主频就决定着CPU的运行速度,这不仅是个片面的,而且对于服务器来讲,这个认识也出现了偏差。至今,没有一条确定的公式能够实现主频和实际的运算速度两者之间的数值关系,即使是两大处理器厂家Intel和AMD,在这点上也存在着很大的争议,我们从Intel的产品的发展趋势,可以看出Intel很注重加强自身主频的发展。像其他的处理器厂家,有人曾经拿过一快1G的全美达来做比较,它的运行效率相当于2G的Intel处理器。
所以,CPU的主频与CPU实际的运算能力是没有直接关系的,主频表示在CPU内数字脉冲信号震荡的速度。在Intel的处理器产品中,我们也可以看到这样的例子:1 GHz Itanium芯片能够表现得差不多跟266 GHz Xeon/Opteron一样快,或是15 GHz Itanium 2大约跟4 GHz Xeon/Opteron一样快。CPU的运算速度还要看CPU的流水线的各方面的性能指标。
当然,主频和实际的运算速度是有关的,只能说主频仅仅是CPU性能表现的一个方面,而不代表CPU的整体性能。
2外频
外频是CPU的基准频率,单位也是MHz。CPU的外频决定着整块主板的运行速度。说白了,在台式机中,我们所说的超频,都是超CPU的外频(当然一般情况下,CPU的倍频都是被锁住的)相信这点是很好理解的。但对于服务器CPU来讲,超频是绝对不允许的。前面说到CPU决定着主板的运行速度,两者是同步运行的,如果把服务器CPU超频了,改变了外频,会产生异步运行,(台式机很多主板都支持异步运行)这样会造成整个服务器系统的不稳定。
目前的绝大部分电脑系统中外频也是内存与主板之间的同步运行的速度,在这种方式下,可以理解为CPU的外频直接与内存相连通,实现两者间的同步运行状态。外频与前端总线(FSB)频率很容易被混为一谈,下面的前端总线介绍我们谈谈两者的区别。
3前端总线(FSB)频率
前端总线(FSB)频率(即总线频率)是直接影响CPU与内存直接数据交换速度。有一条公式可以计算,即数据带宽=(总线频率×数据带宽)/8,数据传输最大带宽取决于所有同时传输的数据的宽度和传输频率。比方,现在的支持64位的至强Nocona,前端总线是800MHz,按照公式,它的数据传输最大带宽是64GB/秒。
外频与前端总线(FSB)频率的区别:前端总线的速度指的是数据传输的速度,外频是CPU与主板之间同步运行的速度。也就是说,100MHz外频特指数字脉冲信号在每秒钟震荡一千万次;而100MHz前端总线指的是每秒钟CPU可接受的数据传输量是100MHz×64bit÷8Byte/bit=800MB/s。
其实现在“HyperTransport”构架的出现,让这种实际意义上的前端总线(FSB)频率发生了变化。之前我们知道IA-32架构必须有三大重要的构件:内存控制器Hub (MCH) ,I/O控制器Hub和PCI Hub,像Intel很典型的芯片组 Intel 7501、Intel7505芯片组,为双至强处理器量身定做的,它们所包含的MCH为CPU提供了频率为533MHz的前端总线,配合DDR内存,前端总线带宽可达到43GB/秒。但随着处理器性能不断提高同时给系统架构带来了很多问题。而“HyperTransport”构架不但解决了问题,而且更有效地提高了总线带宽,比方AMD Opteron处理器,灵活的HyperTransport I/O总线体系结构让它整合了内存控制器,使处理器不通过系统总线传给芯片组而直接和内存交换数据。这样的话,前端总线(FSB)频率在AMD Opteron处理器就不知道从何谈起了。
4、CPU的位和字长
位:在数字电路和电脑技术中采用二进制,代码只有“0”和“1”,其中无论是 “0”或是“1”在CPU中都是 一“位”。
字长:电脑技术中对CPU在单位时间内(同一时间)能一次处理的二进制数的位数叫字长。所以能处理字长为8位数据的CPU通常就叫8位的CPU。同理32位的CPU就能在单位时间内处理字长为32位的二进制数据。字节和字长的区别:由于常用的英文字符用8位二进制就可以表示,所以通常就将8位称为一个字节。字长的长度是不固定的,对于不同的CPU、字长的长度也不一样。8位的CPU一次只能处理一个字节,而32位的CPU一次就能处理4个字节,同理字长为64位的CPU一次可以处理8个字节。
5倍频系数
倍频系数是指CPU主频与外频之间的相对比例关系。在相同的外频下,倍频越高CPU的频率也越高。但实际上,在相同外频的前提下,高倍频的CPU本身意义并不大。这是因为CPU与系统之间数据传输速度是有限的,一味追求高倍频而得到高主频的CPU就会出现明显的“瓶颈”效应―CPU从系统中得到数据的极限速度不能够满足CPU运算的速度。一般除了工程样版的Intel的CPU都是锁了倍频的,而AMD之前都没有锁。
6缓存
缓存大小也是CPU的重要指标之一,而且缓存的结构和大小对CPU速度的影响非常大,CPU内缓存的运行频率极高,一般是和处理器同频运作,工作效率远远大于系统内存和硬盘。实际工作时,CPU往往需要重复读取同样的数据块,而缓存容量的增大,可以大幅度提升CPU内部读取数据的命中率,而不用再到内存或者硬盘上寻找,以此提高系统性能。但是由于CPU芯片面积和成本的因素来考虑,缓存都很小。
L1 Cache(一级缓存)是CPU第一层高速缓存,分为数据缓存和指令缓存。内置的L1高速缓存的容量和结构对CPU的性能影响较大,不过高速缓冲存储器均由静态RAM组成,结构较复杂,在CPU管芯面积不能太大的情况下,L1级高速缓存的容量不可能做得太大。一般服务器CPU的L1缓存的容量通常在32―256KB。
L2 Cache(二级缓存)是CPU的第二层高速缓存,分内部和外部两种芯片。内部的芯片二级缓存运行速度与主频相同,而外部的二级缓存则只有主频的一半。L2高速缓存容量也会影响CPU的性能,原则是越大越好,现在家庭用CPU容量最大的是512KB,而服务器和工作站上用CPU的L2高速缓存更高达256-1MB,有的高达2MB或者3MB。
L3 Cache(三级缓存),分为两种,早期的是外置,现在的都是内置的。而它的实际作用即是,L3缓存的应用可以进一步降低内存延迟,同时提升大数据量计算时处理器的性能。降低内存延迟和提升大数据量计算能力对游戏都很有帮助。而在服务器领域增加L3缓存在性能方面仍然有显著的提升。比方具有较大L3缓存的配置利用物理内存会更有效,故它比较慢的磁盘I/O子系统可以处理更多的数据请求。具有较大L3缓存的处理器提供更有效的文件系统缓存行为及较短消息和处理器队列长度。
其实最早的L3缓存被应用在AMD发布的K6-III处理器上,当时的L3缓存受限于制造工艺,并没有被集成进芯片内部,而是集成在主板上。在只能够和系统总线频率同步的L3缓存同主内存其实差不了多少。后来使用L3缓存的是英特尔为服务器市场所推出的Itanium处理器。接着就是P4EE和至强MP。Intel还打算推出一款9MB L3缓存的Itanium2处理器,和以后24MB L3缓存的双核心Itanium2处理器。
但基本上L3缓存对处理器的性能提高显得不是很重要,比方配备1MB L3缓存的Xeon MP处理器却仍然不是Opteron的对手,由此可见前端总线的增加,要比缓存增加带来更有效的性能提升。
7CPU扩展指令集
CPU依靠指令来计算和控制系统,每款CPU在设计时就规定了一系列与其硬件电路相配合的指令系统。指令的强弱也是CPU的重要指标,指令集是提高微处理器效率的最有效工具之一。从现阶段的主流体系结构讲,指令集可分为复杂指令集和精简指令集两部分,而从具体运用看,如Intel的MMX(Multi Media Extended)、SSE、 SSE2(Streaming-Single instruction multiple data-Extensions 2)、SEE3和AMD的3DNow!等都是CPU的扩展指令集,分别增强了CPU的多媒体、图形图象和Internet等的处理能力。我们通常会把CPU的扩展指令集称为"CPU的指令集"。SSE3指令集也是目前规模最小的指令集,此前MMX包含有57条命令,SSE包含有50条命令,SSE2包含有144条命令,SSE3包含有13条命令。目前SSE3也是最先进的指令集,英特尔Prescott处理器已经支持SSE3指令集,AMD会在未来双核心处理器当中加入对SSE3指令集的支持,全美达的处理器也将支持这一指令集。
8CPU内核和I/O工作电压
从586CPU开始,CPU的工作电压分为内核电压和I/O电压两种,通常CPU的核心电压小于等于I/O电压。其中内核电压的大小是根据CPU的生产工艺而定,一般制作工艺越小,内核工作电压越低;I/O电压一般都在16~5V。低电压能解决耗电过大和发热过高的问题。
9制造工艺
制造工艺的微米是指IC内电路与电路之间的距离。制造工艺的趋势是向密集度愈高的方向发展。密度愈高的IC电路设计,意味着在同样大小面积的IC中,可以拥有密度更高、功能更复杂的电路设计。现在主要的180nm、130nm、90nm。最近官方已经表示有65nm的制造工艺了。
10指令集
(1)CISC指令集
CISC指令集,也称为复杂指令集,英文名是CISC,(Complex Instruction Set Computer的缩写)。在CISC微处理器中,程序的各条指令是按顺序串行执行的,每条指令中的各个 *** 作也是按顺序串行执行的。顺序执行的优点是控制简单,但计算机各部分的利用率不高,执行速度慢。其实它是英特尔生产的x86系列(也就是IA-32架构)CPU及其兼容CPU,如AMD、VIA的。即使是现在新起的X86-64(也被成AMD64)都是属于CISC的范畴。
要知道什么是指令集还要从当今的X86架构的CPU说起。X86指令集是Intel为其第一块16位CPU(i8086)专门开发的,IBM1981年推出的世界第一台PC机中的CPU―i8088(i8086简化版)使用的也是X86指令,同时电脑中为提高浮点数据处理能力而增加了X87芯片,以后就将X86指令集和X87指令集统称为X86指令集。
虽然随着CPU技术的不断发展,Intel陆续研制出更新型的i80386、i80486直到过去的PII至强、PIII至强、Pentium 3,最后到今天的Pentium 4系列、至强(不包括至强Nocona),但为了保证电脑能继续运行以往开发的各类应用程序以保护和继承丰富的软件资源,所以Intel公司所生产的所有CPU仍然继续使用X86指令集,所以它的CPU仍属于X86系列。由于Intel X86系列及其兼容CPU(如AMD Athlon MP、)都使用X86指令集,所以就形成了今天庞大的X86系列及兼容CPU阵容。x86CPU目前主要有intel的服务器CPU和AMD的服务器CPU两类。
(2)RISC指令集
RISC是英文“Reduced Instruction Set Computing ” 的缩写,中文意思是“精简指令集”。它是在CISC指令系统基础上发展起来的,有人对CISC机进行测试表明,各种指令的使用频度相当悬殊,最常使用的是一些比较简单的指令,它们仅占指令总数的20%,但在程序中出现的频度却占80%。复杂的指令系统必然增加微处理器的复杂性,使处理器的研制时间长,成本高。并且复杂指令需要复杂的 *** 作,必然会降低计算机的速度。基于上述原因,20世纪80年代RISC型CPU诞生了,相对于CISC型CPU ,RISC型CPU不仅精简了指令系统,还采用了一种叫做“超标量和超流水线结构”,大大增加了并行处理能力。RISC指令集是高性能CPU的发展方向。它与传统的CISC(复杂指令集)相对。相比而言,RISC的指令格式统一,种类比较少,寻址方式也比复杂指令集少。当然处理速度就提高很多了。目前在中高档服务器中普遍采用这一指令系统的CPU,特别是高档服务器全都采用RISC指令系统的CPU。RISC指令系统更加适合高档服务器的 *** 作系统UNIX,现在Linux也属于类似UNIX的 *** 作系统。RISC型CPU与Intel和AMD的CPU在软件和硬件上都不兼容。
目前,在中高档服务器中采用RISC指令的CPU主要有以下几类:PowerPC处理器、SPARC处理器、PA-RISC处理器、MIPS处理器、Alpha处理器。
(3)IA-64
EPIC(Explicitly Parallel Instruction Computers,精确并行指令计算机)是否是RISC和CISC体系的继承者的争论已经有很多,单以EPIC体系来说,它更像Intel的处理器迈向RISC体系的重要步骤。从理论上说,EPIC体系设计的CPU,在相同的主机配置下,处理Windows的应用软件比基于Unix下的应用软件要好得多。
Intel采用EPIC技术的服务器CPU是安腾Itanium(开发代号即Merced)。它是64位处理器,也是IA-64系列中的第一款。微软也已开发了代号为Win64的 *** 作系统,在软件上加以支持。在Intel采用了X86指令集之后,它又转而寻求更先进的64-bit微处理器,Intel这样做的原因是,它们想摆脱容量巨大的x86架构,从而引入精力充沛而又功能强大的指令集,于是采用EPIC指令集的IA-64架构便诞生了。IA-64 在很多方面来说,都比x86有了长足的进步。突破了传统IA32架构的许多限制,在数据的处理能力,系统的稳定性、安全性、可用性、可观理性等方面获得了突破性的提高。
IA-64微处理器最大的缺陷是它们缺乏与x86的兼容,而Intel为了IA-64处理器能够更好地运行两个朝代的软件,它在IA-64处理器上(Itanium、Itanium2 ……)引入了x86-to-IA-64的解码器,这样就能够把x86指令翻译为IA-64指令。这个解码器并不是最有效率的解码器,也不是运行x86代码的最好途径(最好的途径是直接在x86处理器上运行x86代码),因此Itanium 和Itanium2在运行x86应用程序时候的性能非常糟糕。这也成为X86-64产生的根本原因。
(4)X86-64 (AMD64 / EM64T)
HAMD公司设计,可以在同一时间内处理64位的整数运算,并兼容于X86-32架构。其中支持64位逻辑定址,同时提供转换为32位定址选项;但数据 *** 作指令默认为32位和8位,提供转换成64位和16位的选项;支持常规用途寄存器,如果是32位运算 *** 作,就要将结果扩展成完整的64位。这样,指令中有“直接执行”和“转换执行”的区别,其指令字段是8位或32位,可以避免字段过长。
x86-64(也叫AMD64)的产生也并非空穴来风,x86处理器的32bit寻址空间限制在4GB内存,而IA-64的处理器又不能兼容x86。AMD充分考虑顾客的需求,加强x86指令集的功能,使这套指令集可同时支持64位的运算模式,因此AMD把它们的结构称之为x86-64。在技术上AMD在x86-64架构中为了进行64位运算,AMD为其引入了新增了R8-R15通用寄存器作为原有X86处理器寄存器的扩充,但在而在32位环境下并不完全使用到这些寄存器。原来的寄存器诸如EAX、EBX也由32位扩张至64位。在SSE单元中新加入了8个新寄存器以提供对SSE2的支持。寄存器数量的增加将带来性能的提升。与此同时,为了同时支持32和64位代码及寄存器,x86-64架构允许处理器工作在以下两种模式:Long Mode(长模式)和Legacy Mode(遗传模式),Long模式又分为两种子模式(64bit模式和Compatibility mode兼容模式)。该标准已经被引进在AMD服务器处理器中的Opteron处理器。
而今年也推出了支持64位的EM64T技术,再还没被正式命为EM64T之前是IA32E,这是英特尔64位扩展技术的名字,用来区别X86指令集。Intel的EM64T支持64位sub-mode,和AMD的X86-64技术类似,采用64位的线性平面寻址,加入8个新的通用寄存器(GPRs),还增加8个寄存器支持SSE指令。与AMD相类似,Intel的64位技术将兼容IA32和IA32E,只有在运行64位 *** 作系统下的时候,才将会采用IA32E。IA32E将由2个sub-mode组成:64位sub-mode和32位sub-mode,同AMD64一样是向下兼容的。Intel的EM64T将完全兼容AMD的X86-64技术。现在Nocona处理器已经加入了一些64位技术,Intel的Pentium 4E处理器也支持64位技术。希望对你有所帮助
AMD CPU 的核心类型
1) Athlon XP 的核心类型 Athlon XP 有 4 种不同的核心类型,但都有共同之处:都采用 Socket A 接口,而且都采用 PR 标称值标注。
2) Palomino 这是最早的 Athlon XP 的核心,采用 018um 制造工艺,核心电压为 175V 左右,二级缓存为 256KB,封装方式采用 OPGA,前端总线频率为 266MHz。
3) Thoroughbred 这是第一种采用 013um 制造工艺的 Athlon XP 核心,又分为 Thoroughbred-A 和 Thoroughbred-B 两种版本,核心电压 165V-175V 左右,二级缓存为 256KB,封装方式采用 OPGA,前端总线频率为 266MHz 和 333MHz。
4) Thorton 采用 013um 制造工艺,核心电压 165V 左右,二级缓存为 256KB,封装方式采用 OPGA,前端总线频率为 333MHz。可以看作是屏蔽了一半二级缓存的 Barton。
5) Barton 采用 013um 制造工艺,核心电压 165V 左右,二级缓存为 512KB,封装方式采用 OPGA,前端总线频率为 333MHz 和 400MHz。
(三)新 Duron 的核心类型
AppleBred 采用 013um 制造工艺,核心电压 15V 左右,二级缓存为 64KB,封装方式采用 OPGA,前端总线频率为 266MHz。没有采用 PR 标称值标注,而以实际频率标注,有 14GHz、16GHz 和 18GHz 三种。
(四)Athlon 64 系列 CPU 的核心类型
1) Sledgehammer Sledgehammer 是 AMD 服务器 CPU 的核心,是 64 位的 CPU,一般为 940 接口,采用 013 微米工艺。Sledgehammer 的功能强大,集成三条 HyperTransprot 总线,核心使用 12 级流水线,128K 一级缓存、集成 1M 二级缓存,可以用于单路到 8 路 CPU 服务器。Sledgehammer 集成内存控制器,比起传统上位于北桥的内存控制器有更小的延时,支持双通道 DDR 内存,由于是服务器 CPU,当然支持 ECC 校验。
2) Clawhammer 采用 013um 制造工艺,核心电压 15V 左右,二级缓存为 1MB,封装方式采用 mPGA,采用 Hyper Transport 总线,内置一个 128bit 的内存控制器。采用 Socket 754、Socket 940 和 Socket 939 接口。
3) Newcastle 其与 Clawhammer 的最主要区别,就是二级缓存降为 512KB(这也是 AMD 为了市场需要和加快推广 64 位 CPU 而采取的相对低价政策的结果),其它性能基本相同。
4) Wincheste Wincheste 是比较新的 AMD Athlon 64 CPU 核心,是 64 位的 CPU,一般为 939 接口,009 微米制造工艺。这种核心使用 200MHz 外频,支持 1GHyperTransprot 总线,512K 二级缓存,性价比较好。Wincheste 集成双通道内存控制器,支持双通道 DDR 内存,由于使用新的工艺,Wincheste 的发热量比旧的 Athlon 小,性能也有所提升。
5) Troy Troy 是 AMD 第一个使用 90nm 制造工艺的 Opteron 核心。Troy 核心是在 Sledgehammer 基础上增添了多项新技术而来的,通常为 940 针脚,拥有 128K 一级缓存和 1MB (1024 KB)二级缓存。同样使用 200MHz 外频,支持 1GHyperTransprot 总线,集成了内存控制器,支持双通道 DDR 400 内存,并且可以支持 ECC 内存。此外,Troy 核心还提供了对 SSE-3 的支持,和 Intel 的 Xeon 相同。总的来说,Troy 是一款不错的 CPU 核心。
6) Venice Venice 核心是在 Wincheste 核心的基础上演变而来,其技术参数和 Wincheste 基本相同:一样基于 X86-64 架构、整合双通道内存控制器、512KB L2 缓存、90nm 制造工艺、200MHz 外频,支持 1GHyperTransprot 总线。Venice 的变化主要有三方面:一是使用了 Dual Stress Liner(简称 DSL)技术,可以将半导体晶体管的响应速度提高 24%,这样 CPU 有更大的频率空间,更容易超频;二是提供了对 SSE-3 的支持,和 Intel 的 CPU 相同;三是进一步改良了内存控制器,一定程度上增加处理器的性能,更主要的是增加内存控制器对不同 DIMM 模块和不同配置的兼容性。此外 Venice 核心还使用了动态电压,不同的 CPU 可能会有不同的电压。
7) SanDiego
SanDiego 核心与 Venice 一样,是在 Wincheste 核心的基础上演变而来,其技术参数和 Venice 非常接近,Venice 拥有的新技术、新功能,SanDiego 核心一样拥有。不过 AMD 公司将 SanDiego 核心定位到顶级 Athlon 64 处理器之上,甚至用于服务器 CPU。可以将 SanDiego 看作是 Venice 核心的高级版本,只不过缓存容量由 512KB 提升到了 1MB。当然,由于 L2 缓存增加,SanDiego 核心的内核尺寸也有所增加,从 Venice 核心的 84 平方毫米增加到 115 平方毫米,当然价格也更高昂。
(五)闪龙系列 CPU 的核心类型
1) Paris
Paris 核心是 Barton 核心的继任者,主要用于 AMD 的闪龙,早期的 754 接口闪龙部分使用 Paris 核心。Paris 采用 90nm 制造工艺,支持 iSSE2 指令集,一般为 256K 二级缓存,200MHz 外频。Paris 核心是 32 位 CPU,来源于 K8 核心,因此也具备了内存控制单元。CPU 内建内存控制器的主要优点,在于内存控制器可以以 CPU 频率运行,比起传统上位于北桥的内存控制器有更小的延时。使用 Paris 核心的闪龙与 Socket A 接口闪龙 CPU 相比,性能得到明显提升。
2) Palermo
Palermo 核心目前主要用于 AMD 的闪龙 CPU,使用 Socket 754 接口、90nm 制造工艺,14V 左右电压,200MHz 外频,128K 或者 256K 二级缓存。Palermo 核心源于 K8 的 Wincheste 核心,不过是 32 位的。除了拥有与 AMD 高端处理器相同的内部架构,还具备了 EVP、Cool'n'Quiet;和 HyperTransport 等 AMD 独有的技术,为广大用户带来更“冷静”、更高计算能力的优秀处理器。由于脱胎与 ATHLON 64 处理器,所以,Palermo 同样具备了内存控制单元。CPU 内建内存控制器的主要优点,在于内存控制器可以以 CPU 频率运行,比起传统上位于北桥的内存控制器有更小的延时。
(六)双核心类型
在2005年以前,主频一直是两大处理器巨头 Intel 和 AMD 争相追逐的焦点。而且处理器主频也在 Intel 和 AMD 的推动下,达到了一个又一个的高峰。就在处理器主频提升速度的同时,也发现在目前的情况下,单纯主频的提升,已经无法为系统整体性能的提升带来明显的好处,并且高主频带来了处理器巨大的发热量。更为不利是,Intel 和 AMD 两家在处理器主频提升上已经有些力不从心了。在这种情况下,Intel 和 AMD 都不约而同地将目光投向了多核心的发展方向。在不用进行大规模开发的情况下,将现有产品发展成为理论性能更为强大的多核心处理器系统,无疑是相当明智的选择。
双核处理器就是基于单个半导体的一个处理器上拥有两个一样功能的处理器核心,即是将两个物理处理器核心整合入一个内核中。事实上,双核架构并不是什么新技术,不过此前双核心处理器一直是服务器的专利,现在已经开始普及之中。
1) Intel 的双核心处理器介绍
目前 Intel 推出的双核心处理器,有 Pentium D 和 Pentium Extreme Edition,同时推出 945/955 芯片组来支持新推出的双核心处理器,采用 90nm 工艺生产的这两款新推出的双核心处理器,使用是没有针脚的 LGA 775 接口,但处理器底部的贴片电容数目有所增加,排列方式也有所不同。
桌面平台的核心代号 Smithfield 的处理器,正式命名为 Pentium D 处理器。除了摆脱阿拉伯数字改用英文字母来表示这次双核心处理器的世代交替外,D 的字母也更容易让人联想起 Dual-Core 双核心的涵义。
Intel 的双核心构架,更像是一个双 CPU 平台,Pentium D 处理器继续沿用 Prescott 架构及 90nm 生产技术生产。Pentium D 内核实际上由于两个独立的 Prescott 核心组成,每个核心拥有独立的 1MB L2 缓存及执行单元,两个核心加起来一共拥有 2MB。但由于处理器中的两个核心都拥有独立的缓存,因此必须保证每个二级缓存当中的信息完全一致,否则就会出现运算错误。
为了解决这一问题,Intel 将两个核心之间的协调工作交给了外部的 MCH(北桥)芯片。虽然缓存之间的数据传输与存储并不巨大,但由于需要通过外部的 MCH 芯片进行协调处理,毫无疑问的会对整个的处理速度带来一定的延迟,从而影响到处理器整体性能的发挥。
由于采用 Prescott 内核,因此 Pentium D 也支持 EM64T 技术、XD bit 安全技术。值得一提的是,Pentium D 处理器将不支持 Hyper-Threading 技术。原因很明显:在多个物理处理器及多个逻辑处理器之间正确分配数据流、平衡运算任务并非易事。比如,如果应用程序需要两个运算线程,很明显每个线程对应一个物理内核,但如果有 3 个运算线程呢?因此为了减少双核心 Pentium D 架构复杂性,英特尔决定在针对主流市场的 Pentium D 中取消对 Hyper-Threading 技术的支持。
同出自 Intel 之手,而且 Pentium D 和 Pentium Extreme Edition 两款双核心处理器名字上的差别也预示着这两款处理器在规格上也不尽相同。其中,它们之间最大的不同,就是对于超线程(Hyper-Threading)技术的支持。Pentium D 不能支持超线程技术,而 Pentium Extreme Edition 则没有这方面的限制。在打开超线程技术的情况下,双核心 Pentium Extreme Edition 处理器能够模拟出另外两个逻辑处理器,可以被系统认成四核心系统。
2) AMD 的双核心处理器介绍
AMD 推出的双核心处理器,分别是双核心的 Opteron 系列和全新的 Athlon 64 X2 系列处理器。其中,Athlon 64 X2 是用以抗衡 Pentium D 和 Pentium Extreme Edition 的桌面双核心处理器系列。
AMD 推出的 Athlon 64 X2 是由两个 Athlon 64 处理器上采用的 Venice 核心组合而成,每个核心拥有独立的 512KB(1MB) L2 缓存及执行单元。除了多出一个核芯之外,从架构上相对于目前 Athlon 64 在架构上并没有任何重大的改变。
双核心 Athlon 64 X2 的大部分规格、功能与我们熟悉的 Athlon 64 架构没有任何区别,也就是说,新推出的 Athlon 64 X2 双核心处理器,仍然支持 1GHz 规格的 HyperTransport 总线,并且内建了支持双通道设置的 DDR 内存控制器。
与 Intel 双核心处理器不同的是,Athlon 64 X2 的两个内核并不需要经过 MCH 进行相互之间的协调。 AMD 在 Athlon 64 X2 双核心处理器的内部提供了一个称为 System Request Queue(系统请求队列)的技术,在工作的时候,每一个核心都将其请求放在 SRQ 中,当获得资源之后,请求将会被送往相应的执行核心。也就是说,所有的处理过程都在 CPU 核心范围之内完成,并不需要借助外部设备。
对于双核心架构,AMD 的做法是将两个核心整合在同一片硅晶内核之中,而 Intel 的双核心处理方式则更像是简单的将两个核心做到一起而已。与 Intel 的双核心架构相比,AMD 双核心处理器系统不会在两个核心之间存在传输瓶颈的问题。因此,从这个方面来说,Athlon 64 X2 的架构要明显优于 Pentium D 架构。
虽然与 Intel 相比,AMD 并不用担心 Prescott 核心这样的功耗和发热大户,但是同样需要为双核心处理器考虑降低功耗的方式。为此 AMD 并没有采用降低主频的办法,而是在其使用 90nm 工艺生产的 Athlon 64 X2 处理器中,采用了所谓的 Dual Stress Liner 应变硅技术,与 SOI 技术配合使用,能够生产出性能更高、耗电更低的晶体管。
AMD 推出的 Athlon 64 X2 处理器给用户带来最实惠的好处就是,不需要更换平台,就能使用新推出的双核心处理器,只要对老主板升级一下 BIOS 就可以了。这与 Intel 双核心处理器必须更换新平台才能支持的做法相比,升级双核心系统会节省不少费用APU中文名字叫加速处理器,是AMD融聚理念的产品,它第一次将处理器和独显核心做在一个晶片上,它同时具有高性能处理器和最新独立显卡的处理性能,支持DX11游戏和最新应用的“加速运算”,大幅提升电脑运行效率,实现了CPU与GPU真正的融合。2011年1月,AMD将推出一款革命性的产品AMD APU,是AMD Fusion 技术的首款产品。另外,APU是辅助动力装置、日本立命馆亚洲太平洋大学、机械装甲步兵和反扒同盟的英文缩写。
目录
一 加速处理器
1APU:未来CPU和GPU的真正融合——AMD2融合应用加速趋势 下一代AMD APU前瞻
二辅助动力装置
三APU-日本立命馆亚洲太平洋大学
四APU 机械装甲步兵
五中文:反扒同盟一 加速处理器
1APU:未来CPU和GPU的真正融合——AMD 2融合应用加速趋势 下一代AMD APU前瞻
二辅助动力装置
三APU-日本立命馆亚洲太平洋大学
四APU 机械装甲步兵
五中文:反扒同盟
展开 编辑本段一 加速处理器
APU背景介绍 AMD未来的处理器组成将按照“推土机”(Bulldozer)和“山猫”(Bobcat)两款全新的处理器架构划分,推土机架构主攻性能和扩展性,面向主流客户端和服务器领域;山猫架构的重点则是灵活性、低功耗和小尺寸,将用于低功耗设备、小型设备、云客户端。 山猫架构就是Fusion APU融合处理器的基础,真实产品包括“Zacate”和“Ontario”两种制品。这两种制品的区别在于,“Zacate”的TDP为18W,主要针对轻薄型PC市场,对阵Intel的ULV(Ultra Low Voltage)系列处理器,而“Ontario”的TDP为9W,主要目标是上网本,对阵Atom系列处理器,本次测试的梅捷SY-E350就是采用的“Zacate”核心。 APU融合技术详细介绍 APU中文名字叫加速处理器,是AMD融聚理念的产品,它第一次将处理器和独显核心做在一个晶片上,它同时具有高性能处理器和最新独立显卡的处理性能,支持DX11游戏和最新应用的“加速运算”,大幅提升电脑运行效率,实现了CPU与GPU真正的融合。 APU性能强悍的秘密在于其革新的核心架构,最新的视频解码引擎,超小芯片和超低功耗设计,强悍的显示性能。 AMD认为,CPU和GPU的融合将分为四步进行: 第一步是物理整合过程(Physical Integration),将CPU和GPU集成在同一块硅芯片上,并利用高带宽的内部总线通讯,集成高性能的内存控制器,借助开放的软件系统促成异构计算。 第二步称为平台优化(Optimized Platforms),CPU和GPU之间互连接口进一步增强,并且统一进行双向电源管理,GPU也支持高级编程语言,这部分才是最关键的。 第三步是架构整合(Architectural Integration),实现统一的CPU/GPU寻址空间、GPU使用可分页系统内存、GPU硬件可调度、CPU/GPU/APU内存协同一致,这已在APU中初步完成。 第四步是架构和系统整合(Architectural & OS Integration),主要特点包括GPU计算环境切换、GPU图形优先计算、独立显卡的PCI-E协同、任务并行运行实时整合等等,这些需要和微软、ADOBE等行业软件巨头不停的沟通交流。 APU是什么?
APU正是AMD公司对融合技术多年研究的成果,传统计算中的绝大部分浮点 *** 作都脱离CPU而转入擅长此道的GPU部分,GPU不再只是游戏工具,混合计算将大放光芒。在不远的未来,CPU和GPU的概念也会渐渐模糊起来,正如AMD所宣传的:The Future is Fusion。
编辑本段1APU:未来CPU和GPU的真正融合——AMD
APU,全称是“Accelerated Processing Units”,加速处理器,它是融聚了CPU与GPU功能的产品,电脑上两个最重要的处理器融合,相互补足,发挥最大性能。 2010年2月,AMD高级副总裁兼技术事业部总经理Chekib Akrout先生给国内的媒体带来了处理器产品线上的最新进展--“APU”,APU是AMD将于2011年投向市场的全新产品类型,它是现有CPU和GPU产品的深度融合,AMD计划用APU来开创桌面、移动以及企业多个领域的全新格局。 据Chekib Akrout所述,APU能够完美融合CPU在复杂顺序计算和GPU在大规模并行计算的双重优势,通过硬件调度逻辑和软件层完美均衡CPU和GPU的负载,把性能从目前多核CPU的水平基础上明显提高一个档次。“最好的CPU和最好的GPU组成了APU!”Chekib这样评价APU。 AMD新APU对比图
AMD的APU将使用业内的通用接口进行应用层面的构建,包括OpenGL和DirectX Compute,AMD已经推出了支持前者的AMD Stream SDK v20;而唯一完全支持后者的API是DX11,现在只有AMD的GPU支持DX11。Chekib称在2010年正式上市的产品中,技术人员在不需要了解APU技术特性的情况下,按照现在的经验继续开发新的内容。 CPU和GPU的真正融合 CPU和GPU性能的发挥很大程度上依赖于自身或外部的内存控制器,而目前市场上的CPU内存控制器+内存使用和GPU相比,各自的性能侧重和构建方式都有很大不同,未来的APU内部的CPU和GPU逻辑将共享同一内存控制器! 同时,目前独立的CPU、GPU甚至是封装在同一基板上的CPU+GPU,都是有独立的内存控制器,数据沟通需要通过I/O,而AMD就是要把它们真正融合起来,而不是简单的把CPU和GPU攒在一起。当笔者问及这样极具挑战的设计下,全新的内存控制器是否能带来APU性能的提升时,Chekib变得保守和严谨起来,他说:“我们的设计目标是提升性能。”看来这一步真的不是那么容易的事。 全新的x86 CPU逻辑:Bulldozer和Bobcat AMD下一代x86核心有2款:高性能的Bulldozer和轻量级的Bobcat。Bulldozer是一款高端产品,通过紧密相连的两个核心共享资源,从而极大的提高了效率。Bulldozer每条并行的线程独享一个专用的整数核心,具有可独享或共享的浮点单元,并共享缓存。Bulldozer有两个执行单元,但可以共享一个浮点的调度程序,使它可以更好地对资源进行优化。处理器采用了高K金属栅级的32纳米SOI技术制造并在2011年上市。Bulldozer核心将在台式机和服务器上使用。 Bulldozer 是AMD在x86处理器中首创多核心共享浮点单元,这样的设计也许是AMD要把大规模浮点计算交由GPU承担的一种思路,当然产品实现的细节目前还不得而知。 Bobcat非常小巧、高效,而且功耗非常低,能够在低于一瓦的情况下工作 AMD新APU对比图
。Bobcat以不到目前处理器核心一半的面积实现了当前主流处理器90%的性能。这款核心将在2011年随着代号为Brazos的笔记本APU问世。它的设计非常灵活,高度可合成,可重新组合CPU使用。Bobcat的目标市场显然是超轻薄以及平面手持设备。 APU的产品规划 APU产品仍然像现在CPU一样因不同性能规划成多个系列,多款型号,购买起来很简单。"这听起来似乎还很有道理,不过相信届时肯定不会有很强CPU+入门GPU这样组合的APU产品,想要APU达到独立CPU+独立GPU的性能定制还是不太现实的事情。 AMD产品事业群资深副总裁、总经理Rick Bergman在近日记者的独家专访中表示,AMD把消费型产品(台式机、笔记本等领域)作为发展重点,未来则会大力发展充分融合了CPU和GPU的下一代APU(加速处理单元)产品,为用户带来更好的用户体验。他同时透露,在2011年上半年APU产品上市前,AMD会与软件合作伙伴展开全面协作,为APU打造完美的产业生态链。 消费型产品是重点 APU是方向 Bergman先生在记者的专访中直言未来AMD着重在消费型产品领域,主要战略是为消费者提供非常完整的GPU和CPU平台,而日后APU的Fusion产品线会给广大消费者带来更高性价比的丰富选择。 Fusion是AMD充分融合了CPU和GPU的下一代APU产品,2月份在ISSCC展会上第一次以技术文档方式亮相,在6月2日进行了第一次晶圆和运行展示。Fusion系列的第一款产品代号为LIano,具备了媲美独立显卡的出色图形处理能力。 Bergman先生表示:AMD认为向APU转变是满足客户需求的必然发展趋势,集合芯片为客户提供丰富的图形处理功能和软件应用平台,从而升级客户体验。APU将为消费者带来“物超所值”的体验,例如让视频重放更清晰,游戏画面更逼真,笔记本续航能力更强。对于电脑制造商而言,APU凭借出色的图像处理能力,提供了全新的产品设计思路和灵感空间,有望带来更新颖有趣的产品。 APU的发展需要软件伙伴支持 在AMD展示Fusion平台时,记者注意到Bergman先生不仅请上了微软的合作伙伴助阵,更宣布推出Fusion基金,帮助软件企业在APU平台上开发更好的应用。 谈到对合作伙伴的重视,Bergman先生对记者表示:“对AMD来说,目标当然致力于制造更好的处理器并且设计更好的平台,但是达到这些目标都需要有软件伙伴非常强有力的支持。靠这些软件伙伴提供更多样的应用程序,我们才能打造更好的使用者体验。” 从完整的演示到明年上半年上市的这段时间内,AMD不仅会大力完善APU的软件应用环境,对其硬件提升也会不遗余力。Bergman先生说:“现在展示Fusion新技术不代表我们停滞不前了,未来AMD进一步会提高GPU处理器的技能,也会研发更好的X86核心。到2011年我们正式发布Fusion产品的时候,相信有更多令人惊艳的应用和产品问世。” AMD对云计算提供从资源到终端的支持 无论是现在完整的CPU和GPU平台,还是未来的APU,AMD的产品都会给最终用户带来更好的体验,其实这也是云计算热潮下终端产品的重要发展趋势之一。Bergman先生说,云计算也会逐渐影响到终端消费者使用笔记本的模式,AMD会致力发展更自然的人机交互界面,希望为笔记本和台式电脑用户提供更好的视觉享受和体验。 除了终端的支持,AMD在云计算的资源端更是重要的参与者。Bergman先生透露,目前AMD已经有200万颗处理器用于云计算。云计算时代的数据中心对服务器重视节能,因此每瓦特的效能成为用户衡量产品的重要指标。“AMD之前才刚发布了Opteron 4000系列,提升了每瓦特的效能,在能源管理上非常突出。” (刘晖) 以下为采访实录: 记者:今天非常高兴能够专访到AMD产品事业群资深副总裁、总经理Rick Bergman先生,我代表记者对您发布的新品以及AMD未来的战略提一些问题,希望您能够向搜狐广大网友介绍AMD在未来的一些战略以及新品规划。 首先,从产品的角度,AMD有非常丰富的产品线,这些产品线中您认为AMD未来更加关注的是哪个领域,在这个领域的战略是怎样的? Rick Bergman:在未来AMD着重在消费型产品这一块,其它产品线也是相当重视的。在消费型产品这块,我们目前的战略主要希望能够提供非常完整的GPU和CPU平台,同时我们也希望在日后可以推出更多的Fusion的产品线提供给广大的消费者。 记者:现在云计算这个概念在全球越来越火热,应用越来越多,您如何看待计算的终端产品在云计算时代的发展趋势,AMD在产品技术方面有什么策略应对云计算时代的到来? Rick Bergman:其实AMD在云计算领域,过去很长时间以来一直扮演非常重要的角色,目前为止我们在市场上已经有200万颗处理器用于云计算。其实我们之前才刚发布了Opteron 4000系列,主打希望能够提升它每瓦特的效能。在云计算和数据库的应用上不仅CPU的效能很重要,同时在能源管理上也是非常重要的。 随着未来应用的展开,云计算也会逐渐影响到终端消费者在利用笔记本部分的应用模式。目前AMD最主要目标是致力发展一个更自然的人机交互界面,我们希望能够提供给笔记本和台式电脑用户一个更好的视觉享受和体验。 记者:今天上午发布会上您进行了新的Fusion平台演示,我们感到这个平台不仅是CPU和GPU在架构上的融合,而且您同时宣布的跟软件合作伙伴的合作以及Fusion基金的创立,代表的是AMD与合作伙伴以及业界的一种融合,您能否在这方面做一些更加详尽的介绍? Rick Bergman:对AMD来说,目标当然致力于制造更好的处理器并且设计更好的平台,但是达到这些目标都需要有软件伙伴非常强有力的支持。靠这些软件伙伴提供更多样的应用程序,我们才能打造更好的使用者体验。这也是我们成立Fusion基金的原因,就是希望能够加快软件伙伴的研发能力,为用户提供更好的应用程序。 记者:我们已经看到了Fusion的完整演示,明年上半年这个产品才能真正面市。在这个期间,Fusion计划还会有怎样的发展?AMD正致力于在哪些方面进一步改善或者提高Fusion的表现? Rick Bergman:我们今天推出Fusion新技术不代表我们停滞不前了,未来AMD进一步会提高GPU处理器的技能,同时跟我们的软件合作伙伴进一步合作,提供更多的软件。当然我们也会研发更好的X86核心,例如已经推出的六核技术。另外AMD在图形技术方面继续改进,到2011年我们正式发布Fusion产品的时候,相信有更多令人惊艳的应用和产品问世。 记者:今年的台北国际电脑展上,很多厂商展示自己的3D应用。而年初《阿凡达》给大家带来了对于3D的预期,AMD对于3D应用在未来产品上有什么倾向或者调整的趋势? Rick Bergman:在3D应用上我们可以分成两个部分:第一个部分是3D视频播放,目前我们生产的GPU都能够支持《阿凡达》这样的3D视频播放;二是在游戏的部分。我们希望能够让整个3D的应用程序发展体系越来越完整,越来越好,形成一个产业的生态链。所以目前我们希望能够通过开放资源的标准来支援我们游戏的发展平台,同时,我们也会推动特殊的3D眼镜还有各种显示器发展。我们希望能够建立非常完整的软件和应用体系,让我们的3D应用非常完整。
2融合应用加速趋势 下一代AMD APU前瞻
曾几何时,我们对于笔记本的要求是那么的简单:仅仅是在重要的商务场所,代替笨拙的台式机,可以随时随地进行简单的数据文字处理和收发邮件。然而,随着时间的推移,我们奢望着笔记本可以给予我们更多的功能:“玩游戏”“能玩大型游戏”,“看”“能看高清”、“数据处理”“多任务大型数据处理”,无止境的对于性能追求,一度让笔记本产品的功耗和发热量不堪重负,更让笔记本的便携性和待机时间无从谈起。难怪有言论说:“笔记本终将取代台式机,成为PC的代名词。”笔记本,仅仅是一个移动数据处理终端,也许仅仅是个便携的娱乐中心,它不是万能的;笔记本也不能完全取代台式机,就像台式机不能取代笔记本一样。笔记本,更需要的是一个性能和功耗完美平衡。对于笔记本而言,更低的功耗、更多的应用软件优化支持,在这个CPU性能过剩的今天,对于我们使用电脑的意义要大远于更高的性能。基础之上的。 然而随着AMD最新Brazos平台APU的发布,以往上网本和12寸以下小本娱乐性能不强的特性,将被打破。在保证超长待机时间、低下的发热量和轻薄便携性的同时,采用AMD最新Brazos平台的APU的上网本,也可以流畅播放高清和玩像《魔兽世界》这样的大型3D游戏,以往集成显卡性能过于“鸡肋”也已经成为过去。最新的软件优化支持,更流畅的高清视频播放,让我们的笔记本更加易用化、人性化。AMD的平台功耗控制相比Inte一直都更有优势。从上面的图表,我们不难看出,目前发布的Brazos APU平台,主打主流入门笔记本Zacate核心功耗为18瓦的,而针对上网本市场推出的OntarIo平台,设计功耗仅为9W!为了凸显AMD产品在图形处理性能以及功耗上的领先性能,特意给自己针对上网本市场推出的C系列CPU,起了个“高清小本”的名字。从此次官方给出的一些数据表明,AMD此次发布的新APU,在保持一贯的高性能影音娱乐性能外,誓将低功耗、低发热、超长待机进行到底,从而和竞争厂商Intel的SandyBridge所追求的高性能+双 APU和GPU的融合,可以最大程度的降低CPU+GPU的总体功耗,有效减少CPU、GPU、北桥之间的延迟。事实也证明,采用AMD最新APUE-350的宏碁4253笔记本,在进行一天的使用后,键盘以及背面,没有任何的温热感,这一点不得不佩服新APU的功耗控制。 目前,据AMD官方介绍,AMD此次提出的融合概念APU,并不能用传统的CPU和GPU单独测试方法来决定性能,CPU+GPU可以完全实现1+1大于2的效果,而且目前已经有诸多软件对其进行优化。 从上面数据来看,如果真如表内测试成绩而言,E-350 APU集成的HD6310显卡,无论在游戏性能还是高清播放性能上已经可以和入门的HD5470想媲美,预想处于相同性能等级、功耗更低,待机时间更长,发热量更小的C系列处理器产品上市将会在未来的一段时间内,成为这一价位上网本和11寸以下小本的首选。而E系列处理器,可以使传统的14寸主流笔记本,在保证性能够用的前提下,变得更加清凉、待机时间也将大大增加。在不远的将来,价格3000元左右的10吋上网本,可以轻松实现高清播放和3D游戏娱乐,已经离我们越来越近。超低的功耗、超低的发热、强大的影音解码体验、主流的3D应用的性能、这就是AMD新APU带给我们的最大惊喜。
编辑本段二辅助动力装置
APU:民航专业术语缩写:辅助动力装置,飞机如果APU故障是可以放行的,只需在地面提供 电源车,气源车 APU是辅助动力装置的缩写 在大、中型飞机上和大型直升机上,为了减少对地面(机场)供电设备的依赖,都装有独立的小型动力装置,称为辅助动力装置或APU。 APU的作用是 向飞机独立地提供电力和压缩空气 ,也有少量的APU可以向飞机提供附加推力。飞机在地面上起飞前,由APU供电来启动主发动机,从而不需依靠地面电、气源车来发动飞机。在地面时APU提供电力和压缩空气,保证客舱和驾驶舱内的照明和空调,在飞机起飞时使发动机功率全部用于地面加速和爬升,改善了起飞性能。降落后,仍由APU供应电力照明和空调,使主发动机提早关闭,从而节省了燃油,降低机场噪声。 通常在飞机爬升到一定高度(5000米以下)辅助动力装置关闭.但在飞行中当主发动机空中停车时, APU可在一定高度(一般为10000米)以下的高空中及时启动,为发动机重新启动提供动力。 辅助动力装置的核心部分是一个小型的涡轮发动机,大部分是专门设计的,也有一部分由涡桨发动机改装而成,一般装在机身最后段的尾锥之内,在机身上方垂尾附近开有进气口,排气直接由尾锥后端的排气口排出。发动机前端除正常压气机外装有一个工作压气机,它向机身前部的空调组件输送高温的压缩空气,以保证机舱的空调系统供给,同时还带动一个发电机,可以向飞机电网送出115V的三相电流。APU有自己单独启动电动机,由单独的电池供电,有独立的附加齿轮箱、润滑系统、冷却系统和防火装置。它的燃油来自飞机上总的燃油系统。 APU是动力装置中一个完整的独立系统,但是在控制上它和整架飞机是一体的。它的控制板装在驾驶员上方仪表板上,它的启动程序、 *** 纵、监控及空气输出都由电子控制组件协调,并显示到驾驶舱相关位置,如EICAS的屏幕上。 现代化的大、中型客机上,APU是保证发动机空中停车后再启动的主要装备,它直接影响飞行安全。APU又是保证飞机停在地面时,客舱舒适的必要条件,这会影响旅客对乘机机型的选择。因此APU成为飞机上一个重要的不可或缺的系统。
编辑本段三APU-日本立命馆亚洲太平洋大学
日本立命馆亚洲太平洋大学(Ritsumeikan Asia Pacific University,简称APU)。是日本立命馆集团下设的一所私立大学。位于日本九州岛大分县别府市十文字原一丁目一番。学校分为大学院和研究生院。学校网站
编辑本段四APU 机械装甲步兵
在《黑客帝国》中出现的人类用来对抗机器章鱼的APU(Armored Personal Units)这种机器需要人类来驾驶,其本身并没有人工智能。APU的外表给人以非常强壮的感觉,而其材质和表面的光泽带来一种冷冰冰的金属质感。APU的内部结构也是经过精心设计的,即使在现实中也能具有很高的可行性。因此这个机器人的形象无论从任何方面看起来都非常完美,必将成为科幻史上的一个经典。 APU分为两种,第一种是“第二次文艺复兴”之前的APU,这类APU的 *** 作室呈封闭状态,主要作用是保护人类单兵,所以其进攻性能以及机甲能动性都较差。第二中是“复兴”之后改进型的APU,这类APU几乎取消了 *** 作室保护盖, *** 作APU的人类单兵几乎暴露在外,但正因为少了复杂的防御设备,使得APU的重量大大减轻,进攻性和机甲能动性相对提升,同时,由于缺乏保护,这种APU的 *** 作单兵常常给人一种“不成功则成仁”的壮烈感。
编辑本段五中文:反扒同盟
英文:APU Anti-Pickpocket Union 这个标识的简要说明: 整体外形,由两个拟人化的相同箭头形状表示,在外形上达到一致,说明每个人先天都是平等公平的。没有差别。二只眼睛分别为心怀不轨和无限正义,在这场正义的演练中更形象地刻画出两个主角的特性。在色彩上采用红蓝两色。而红色代表激烈的冲突或是问题,蓝色代表天空大海的包容与冷静。正体现了扒手与反扒队员的特征。 整个标识外型简洁有张力,色彩靓丽,表达的意思非常鲜明。AMD处理器的服务器发热高,稳定性差,这是缺点
惠普的服务器 HP Integrity服务器为向动成长企业迈进奠定了坚实基础。作为全球最全面的行业标准服务器系列,Integrity服务器能够满足您最苛刻的业务需求,为您提供绝佳选择。其设计融合了独特创新,无论是在系统内部还是外部都带来了突破性的非凡价值。此外,它们还提供了世界一流的使用体验,并通过紧密协作来设计和构建灵活的基础设施,以使您能够从容应对变革和拓展业务。
一旦投资了合适的系统来构建IT设施的基础,您便可高枕无忧,因为您投资的价值将会随着需求的增加而不断提升。HP基于标准的服务器创新以及与业界主要ISV(独立软件开发商)强大的合作关系共同打造了全面的解决方案,使您能够轻松、经济高效地应对变革。
借助Integrity服务器,您可以选择运行各种 *** 作系统,而不是受制于专有解决方案-带来出色的投资保护并降低了TCO(总体拥有成本)。我们创新的虚拟化和管理解决方案提高了资源利用率、简化了运营并降低了成本。同时,HP坚定不移地推广标准化的解决方案、建立强大的合作伙伴关系并提供全方位的服务、咨询和支持。HP Integrity服务器拥有行业领先的卓越性能和关键任务可靠性,专门针对最苛刻的工作负载而设计,帮助您建立协调一致的IT与业务环境。
HP Integrity服务器 = 信赖
成功的企业必须能够快速、无缝、经济高效地适应内部及外部的环境。这正是我们采用行业标准的体系结构和内建的模块化特性来设计HP Integrity服务器的原因,这样我们的系统便能够满足您当前和未来的需求。借助HP Integrity服务器,您可以选择创新的解决方案来满足业务需求,并获得世界一流的使用体验。
绝佳选择
在瞬息万变的世界中,您所面临的挑战是如何获得出色的灵活性来应对变革并拓展业务。HP Integrity服务器提供了卓越的性能来满足您最苛刻的工作负载,提供了最广泛的 *** 作环境选择来满足不断变化的业务需求,并且提供了针对各种工作负载的一流的可用性。
除了拥有领先的性价比优势,Integrity服务器还支持行业领先的主要 *** 作环境-HP-UX 11i、Linux®、Microsoft® Windows®Server 2003和OpenVMS-使您能够按照自已的方式来开展业务。这意味着这些高性能平台将帮助您轻松、快速地部署新的解决方案,同时帮助实现苛刻工作负载在多个 *** 作环境之间的整合,进而带来更高的简易性、灵活性和价值。
HP Integrity服务器还提供了卓越的投资保护。随着未来业务要求的不断变化,您可以重新部署Integrity服务器,以在不同的 *** 作系统上运行不同的IT解决方案。现有的HP 9000服务器和HP Integrity服务器以后还能够根据您的需求从机箱内轻松升级至最新的安腾2技术。此外,以平均5-10年的生命周期计算,Integrity服务器能够持续更久。
独特创新
HP实际上已经成为创新的代名词。HP Integrity服务器在设计中采用了多种创新技术,它将为您带来:
领先的虚拟化解决方案,将资源进行池化集中和共享,从而使IT供应与业务需求自动保持协调一致
简化的管理,紧紧围绕您的业务目标
优化资产利用率,使您做到事半功倍
Integrity服务器虚拟化解决方案包含Virtual Server Environment(虚拟服务器环境),它能够轻松自如地调配您的资源,随时随地满足您的需要,以实现最灵活、最高效的运营。HP还充分利用其在高可用性解决方案领域的丰富经验,向Integrity服务器增加了集群能力,以增强安腾2处理器内建的高可靠性、可用性和可维护性(RAS)等特性。
此外,Integrity服务器创新的系统设计还将帮助您让新一代安腾2架构系统发挥更高性能。HP mx2双处理器模块使您能够在同一机箱内(入门级Integrity服务器之外)部署数量加倍的安腾2处理器。mx2双处理器模块由HP开发,它将工作负载容量和性能密度提高到了此前基于单安腾2的Integrity服务器的两倍。而且,HP的可扩展处理器芯片组还提高了安腾2处理器内存和I/O子系统的可扩展性。借助中高端Integrity服务器单元板体系结构上的硬分区功能,您还能够将单个的英特尔安腾处理器与mx2双处理器模块在同一机箱内混合使用。
采用mx2双处理器模块的HP Integrity服务器拥有超凡的计算能力,它通过应用和服务器整合使资源管理变得更加简单、有效,从而带来了更高的整体性能和更低成本。整合简化了系统管理,释放出更多用于业务流程而不是IT维护的资源,并且带来了更加优化的基础设施,能够轻松、快速地适应和应对变革。此外,整合还降低了硬件、软件许可以及物理占地空间等方面的成本。
HP与主要的技术领导厂商携手打造创新的行业标准解决方案,无论是在系统内部还是外部都带来了突破性的价值。由于不再受制于专有技术,您将可以从更低的成本和风险中获得巨大优势。
5月27日,AMD在2019台北电脑展COMPUTEX展前新闻发布会上举行主题演讲,AMD CEO苏姿丰登台,发布了一系列新品。
继Ryzen 7 3700X之后, 苏博士正式发布了Ryzen 9 3900X,世界首款12核心电竞桌面CPU。
Ryzen 9 3900X为12核心24线程,38GHz基础频率,46GHz睿频频率,总缓存70MB,TDP 105W。
在CineBench 20测试中, Ryzen 9 3900X单核性能比i9-9920X高出14%,多核性能高出6%。
发布会还在进行中,我们将持续报道。
台北电脑展COMPUTEX 2019展会将于5月28日正式开幕,展会时间截止6月1日,有1685家厂商参展,分享5508个展位,COMPUTEX 2019定位构建全球 科技 生态,共有5大主题,分别为AI%IoT、5G、区块链、创新与创业、电竞与混合现实。
“AMD这是踩爆牙膏管了吗?AMD yes!!!”
昨天AMD在拉斯维加斯的CES上发布7nm锐龙移动处理器R7 4800U之后,一位数码博主在朋友圈激动地留下了这一句话。
在CES大展第一天,AMD与英特尔的龙虎斗就吸引了全行业的关注。根据AMD官方公布的数据显示,R7 4800U在Cinebench R20上的成绩,超越竞争对手英特尔的10nm酷睿 i7约90%。可以说,尽管没能真正上机实测,但这组官方数据已经足够让“农企”的粉丝兴奋了。
从CES现场的硝烟味,可以看到两大巨头的碰撞。英特尔希望通过推出首款独立显卡拉开与AMD的距离,而AMD则通过多款7nm芯片进军PC市场,谋求突袭英特尔的大本营。
直到今天,外界对跳票N年多的英特尔10nm工艺依旧诟病不断。此次CES上英特尔公布了采用10nm+制程工艺的Tiger Lake处理器,但真正出货据传仍要等到今年晚些时候。
至于更受普通消费者期待的第十代移动标压版酷睿处理器Comet Lake-H,尤其是那几款突破5GHz频率的型号,恐怕真的要在今年一季度结束时才能出货了。
回顾AMD和英特尔这对欢喜冤家的发展 历史 ,我们不难发现一个有趣的现象,虽然英特尔在相对长时间内一直领先于AMD,但后者的崛起似乎总是周期性的,每隔一段时间它就会让外界感到一次惊喜。
过去几年,由于产品力的孱弱,AMD在芯片领域几乎成为高功耗、低性能的代表。所谓性能靠不住,全靠频率往上凑,所以我们看到了饱受诟病的推土机系列,乏力的表现也给AMD带来了“农企”的外号。
但 历史 总是惊人的相似,在Ryzen系列以及最新7nm工艺的加持下,此前几乎成为“原罪”的AMD又一次获得了市场的认可。而相比之下,不断打磨14nm的英特尔则成为了新时代用户调侃的对象。当14nm后面的加号越来越多,英特尔从“牙膏厂”变成了“拉链厂”。
本次CES上,当发布会结束后,AMD掌门人苏姿丰亮出手持8核APU与64核线程撕裂者的照片时,她脸上的自信笑容似乎也证明,2020年这个开门红,“农企”又领先了对手一步。
过去一年,AMD似乎一直顺风顺水。当全球 科技 股普遍表现不佳的同时,AMD股价却上涨了1584%,超过597%的行业平均涨幅。而就在三年前,AMD还因为推土机系列的失败一度徘徊在破产边缘。
这次惊人转变的原因,主要是得益于市场对AMD显卡的强劲需求,以及新一代处理器Ryzen“系列”的成功。如今AMD积极向7nm制程转变,并在设计效率方面迅速提升,这些举措都令英特尔倍感压力。
AMD的崛起,最直接承受压力的就是英特尔,无论是在市场份额还是在舆论方面。从2019年AMD推出第二代锐龙APU处理器,到7nm工艺的桌面版锐龙3000、服务器版EPYC 7002系列的陆续亮相,舆论先后多次传出看衰英特尔的声音。
那么,英特尔真的有那么惨吗?我们不妨仔细解读一下。
首先我们要提出一个问题,过去这两年英特尔难不难?如果相比较前几年把AMD按在地上摩擦时的酸爽,近两年英特尔确实有点儿难。
2019年,随着苹果和高通之间握手言和,英特尔也被迫放弃了自己坚持多年的5G基带业务。另外, 面对AMD 7nm工艺的新产品,英特尔这边还在继续打磨14nm芯片,总有些赶不上趟的磨蹭劲儿。记得早在2013年,英特尔就曾宣布会在2016年推出10nm,2018年推出7nm。但如今7年时间过去了,10nm工艺的芯片依旧难产,这也是外界不断看衰它的主要原因。
反观AMD,据悉下一代处理器架构Zen3将会采用台积电的第二代7nm工艺(即7nm+EUV),而英特尔的10nm工艺似乎还在继续酝酿和打磨。这种反差,可以看出源自于两家企业研发理念的不同,也来自于商业模式上的巨大差异。
早年间因为减负需求,AMD剥离了自己的芯片制造厂Global Foundries,至此AMD成为了一家仅参与设计但不参与生产的芯片企业(类似于华为海思)。而英特尔那边,自始至终都是坚持自己设计、自己生产的理念。
目前AMD的7nm工艺是由台积电负责代工,同样使用台积电7nm工艺的还有华为的麒麟芯片。所以,从某种程度上来看AMD也是获得了来自移动领域的制程红利。
而英特尔方面则不同,英特尔拥有自己的芯片生产工厂,不可能寻求台积电的代工。另外,自建产线的产能也有限,因此过去我们经常会看到英特尔遭遇芯片缺货的难题。
但是,抛开这些差异,我们在分析芯片制程方面不能单纯以数字论英雄。可以说,英特尔的10nm相较于AMD的7nm并不弱,如果以每平方毫米的晶体管数目作为标准,AMD(也就是台积电10nm工艺)每平方毫米的晶体管数量不到5000万,而英特尔(10nm工艺)每平方毫米的晶体管数量却超过 1 亿。目前,AMD的7nm+工艺的单位晶体管数目也超过了1亿。所以从这个层面来看,英特尔的10nm与AMD的7nm工艺是持平的。
要说唯一的劣势,就是英特尔10nm至今仍未大规模量产,而AMD已经已经开始力推7nm锐龙APU了,尤其是这个系列的APU将包含15W超低功耗、45W笔记本、65W桌面和35W桌面节能版等四大类别,SKU更是多达28款。
一旦AMD的芯片在性能追赶上来,而价格方面相较于英特尔的产品又有明显优势,市场份额自然会大幅提高。但是,英特尔的蓄势和磨蹭其实有着更大的图谋。
虽然过去两年AMD迎来了高光时刻,不过谁也不能否认,从企业整体实力上来看其与英特尔还是存在着很大的差距。至于英特尔的10nm工艺为什么难产,以及其这两年相对较慢的产品迭代问题,或许除了技术层面的限制还有商业层面的考量。
对于英特尔而言,AMD是谁?是一个紧随自己多年的竞争对手。
从正常的商业逻辑上来考虑,每一家企业都会尽可能的去挤压竞争对手的生存空间,最好是完全碾压它。所以,从正常逻辑来看,如果AMD倒闭破产,对于英特尔来说应该是最好的结果。
但是,真的出现这样的局面,英特尔绝对会“苦不堪言”。
AMD对于英特尔是一个不可缺少的存在。因为一旦没有了AMD的竞争,很多国家和地区的反垄断机构立刻就会找上英特尔,看到谷歌在欧洲被罚的几十亿欧元巨款了吗,英特尔可不希望交这份冤枉钱。
所以对于英特尔而言,一个永远活着但威胁不到它的AMD,是最理想的市场竞合状态。尤其是AMD发展 历史 中几乎周期性的崛起脉络,也导致外界一直有传言称,这是英特尔在“有预谋”地故意放水。
当然,放水一说只是外界猜测。不过从公司经营决策上来看,相较于市场份额,如今英特尔要更看重的是经营利润。
数据显示,虽然英特尔2018年的市场份额有所下滑,但其通过推高CPU价格得以维持了营收增长。以台式电脑处理器的销量来看,虽然销量同比下滑了6%,但英特尔却通过11%的价格涨幅缓解了这一难题。
而从市场的需求来看,14nm芯片依然是市场的主流。根据此前外媒的调研报告显示,即便英特尔不遗余力地提高14nm的产能,却依然无法满足市场的需求。
要知道在此之前,根据英特尔官方的说法,其在14nm芯片的产能投入上可是增加了很多的。据悉相比2018年,英特尔在2019年对14nm晶圆每月启动量(WSPM)提高了25%。2019年前三季度,英特尔共花费了115亿美元支出来购买新的生产设备,预计全年相关资本支出将达到160亿美元,比预期高出了5亿美元。
即便如此,英特尔依然无法满足市场的强大需求。换位思考一下,这样的情况下英特尔自然要优先满足14nm芯片的市场。这也是股东利益最大化的最优解。
根据英特尔此前公布的2019年第三季度财报显示,当季整体营收为1919亿美元,高于市场预期的18045亿美元;净利润为60亿美元,高于市场预期的5282亿美元。
对此,互联网行业分析师孙永杰对懂懂笔记表示:“每一家企业都会考虑投入产出比的问题,改造或者新建一条芯片的生产线,往往是几十亿甚至上百亿美元的投入。另外,现在14nm的市场需要旺盛,生产线就这么多,英特尔自然会把主要精力放在这上面,这样才能够保证其当下利润最大化以及股价的提升。”
凡事有利必有弊。
这种举措也会带来负面影响。因为维持股价和投资回报率,会导致企业缺乏对创新项目的孵化冲动与耐心,这种因冲动和愿景带来的内生性增长,才是每家追求基业长青的企业必须去做的事。即便英特尔的5G基带业务就是源自这种 探索 导致的挫折,但是其不会、也不应该放弃对创新的不断尝试。
10nm芯片的不断跳票的背后,或许还有其他的原因。只不过,获取高利润的同时,英特尔显然也要承受市场份额的下滑和以及舆论的压力。作为一家芯片行业的巨头,我们可以看到此次CES上英特尔也拿出了很多面向未来的产品,甚至描绘了PC市场的未来,但这些产品对于普通消费者而言似乎有些过于遥远,尚不能轻易触及。
随着AMD yes!!!的声音越来越多,英特尔到了真正拿出一些让市场和用户真正为之兴奋产品的时候了。否则,大意失荆州的故事不是只在小说中才会出现!
——————————————————————————————————
微信关注公众号“懂懂笔记”每天第一时间为您奉上最新最热的 科技 圈资讯~
多年 财经 媒体经历,业内资深分析人士,圈中好友众多,信息丰富,观点独到。
发布各大自媒体平台,覆盖百万读者。
《小米生态链战地笔记》、《微信思维》、《微信力量》三本畅销书的作者。
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)