这种加密算法的加密方式是这样的:
首先,它需要选取一种传统的加密算法,通常中单向散列算法,如SHA,作为它的基础加密算法;
其次,它需要指定一个迭代次数,这个迭代次数是用来确定在进行一个明文的加密的过程中,基础迭代算法应该被执行的次数,这也是该算法安全性的保证,通过增加这个迭代次数,可以在不修改算法其它部分的情况下,简单地获得更高的安全性;
在进行加密之前,通常还需要为一段明文生成一个随机串。这个随机串用来使密码破解变得没有普遍的参考价值,即对一个密码的破解只适用于其明文本身,而明文相同的其它加密结果与其无关。
下面就是算法的执行过程了,对于一个明文,算法将其与随机串连接后送入基础加密算法,得到一个加密串,再将加密结果与随机串连接,送入基础加密算法……如此迭代执行至达到预设的迭代次数为止,最后一次的加密结果就是算法的输出了。
验证的时候,将明文和存储的随机串重复上述加密过程,比对加密结果即可。
这个算法主要用于密码的加密存储,不知道你指的软件和你的用途是什么。在服务器应用环境中,PHP已经内置了对pbkdf2的支持(从550版本开始)。
对称加密就是指,加密和解密使用同一个密钥的加密方式。需要用到的有加密算法和加密秘钥。例如加密算法可以类似这样的加密规则(a ->b,b->w,c->a)
发送方使用密钥将明文数据加密成密文,然后发送出去,接收方收到密文后,使用同一个密钥将密文解密成明文读取。
优点:加密计算量小、速度快,效率高,适合对大量数据进行加密的场景。
缺点:(1)密钥不适合在网上传输(容易被截取),(2)密钥维护麻烦
DES 、3DES、Blowfish、IDEA、RC4、RC5、RC6和AES。
数据加密标准DES属于常规密钥密码体制,是一种分组密码。加密前,先对整个明文进行分组,每一组长为64位,然后对每一个64位二进制数据进行加密处理,产生一组64位密文数据。最后将各组密文串接起来,即得出整个的密文。使用的密钥为64位(实际密钥长度为56位,有8位用于奇偶检验)
DES的保密性取决于密钥的保密,而算法是公开的。尽管人们在破译DES方面取得了许多进展,但至今仍未能找到比穷举搜索密钥更有效的方法。DES是世界上第一个公认的实用密码算法标准,它曾对密码学的发展做出了重大贡献。目前较为严重的问题是DES的密钥长度,现在已经设计出搜索DES密钥的专用芯片。
DES算法安全性取决于密钥长度,56位密钥破解需要35到21分钟,128位密钥破解需要54 10^18次方年
注意的是:这里是没有密钥的情况下,直接穷举密钥尝试破解。如果密钥在传送过程中被人截取了,就相当于直接知道加密规则了,根本不需要破解,因此密钥在网络中传送还是不安全。
与对称加密算法不同,非对称加密算法需要密钥对,即两个密钥:公开密钥(公钥)和私有密钥(私钥)。
公开密钥与私有密钥是一对,如果用公开密钥对数据进行加密,只有用对应的私有密钥才能解密;如果用私有密钥对数据进行加密,那么只有用对应的公开密钥才能解密。因为加密和解密使用的是两个不同的密钥,所以这种算法叫作非对称加密算法。
公钥和私钥是怎么来的?
*** 作系统随机生成一个随机数,将这个随机数通过某个函数进行运算,分成两部分,公钥和私钥
优点:安全性高
缺点:加密与解密速度慢。
RSA、ECC(移动设备用)、Diffie-Hellman、El Gamal、DSA(数字签名用)。
答案是不能
鉴于非对称加密的机制,我们可能会有这种思路:服务器先把公钥直接明文传输给浏览器,之后浏览器向服务器传数据前都先用这个公钥加密好再传,这条数据的安全似乎可以保障了! 因为只有服务器有相应的私钥能解开这条数据 。
然而 由服务器到浏览器的这条路怎么保障安全? 如果服务器用它的的私钥加密数据传给浏览器,那么浏览器用公钥可以解密它,而这个公钥是一开始通过明文传输给浏览器的,这个公钥被谁劫持到的话,他也能用该公钥解密服务器传来的信息了。所以 目前似乎只能保证由浏览器向服务器传输数据时的安全性 (其实仍有漏洞,下文会说)。
1、先通过非对称加密技术,把对称加密的密钥X传给对方,使得这个对称加密的密钥X是安全的
2、后面再通过对称加密技术进行数据传输
详细流程
(1)服务器端拥有用于非对称加密的 公钥A 、 私钥A’ 。
(2)客户端向网站服务器请求,服务器先把 公钥A 明文给传输浏客户端
(3)客户端随机生成一个用于对称加密的 密钥X ,用 公钥A 加密后传给服务器端。
(4)服务器端拿到后用 私钥A’ 解密得到 密钥X 。
(5)这样双方就都拥有 密钥X 了,且别人无法知道它。之后双方所有数据都用 密钥X 加密解密。
数字签名是基于公钥密码体制(非对称密钥密码体制)的。
数字签名必须保证以下三点:
上图位用户A使用数字签名向用户B传输一份文件的过程:
什么时候使用这种不对文件加密,而对文件的摘要加密(对文件进行签名)的技术呢?
注意: 这里强调的是只有“A公钥” 上有认证机构CA的数字签名,意思是CA用它的私钥对“A公钥”的内容进行单向散列函数得到的 加密摘要(数字签名) ,该签名放在“A公钥”中(左上角那个),对于B用户来说,它从可靠的路径拿到CA的公钥,使用CA的公钥解密“A公钥”的内容得到的128位的摘要 和 “A公钥”的内容通过单向散列函数计算出来的是否一致,如果是表示认可这个“A公钥”
当用户A遗失或泄露了CA颁发的证书后,为了避免他人使用该证书冒充用户A,用户A向认证机构CA "挂失" 该证书。于是认证机构CA把该证书放入该认证机构的证书吊销列表(CRL)中,并在网上公示。
用户B在收到用户A的公钥时,除了要验证该公钥是否位认证机构颁发的,还要登录认证机构的网站查看该公钥是否已被认证机构吊销变为无效证书。
认证机构CA的作用:
1、>对于打开了某个论坛,输入了用户名和密码,其实如果网站设计者重视安全问题的话一般会对输入的用户名和密码进行加密,加密后的用户名和密码用一连串的字符表示,所以即使别人窃取了你的用户名和密码和密码,他们如果不知道怎么解密,他们只能得到一连串的字符,所以这也是一道防线。 欢迎分享,转载请注明来源:内存溢出
接下来就是网络安全方面的问题:
数据加密(Data Encryption)技术
所谓加密(Encryption)是指将一个信息(或称明文--plaintext) 经过加密钥匙(Encrypt ionkey)及加密函数转换,变成无意义的密文( ciphertext),而接收方则将此密文经过解密函数、解密钥匙(Decryti on key)还原成明文。加密技术是网络安全技术的基石。
数据加密技术要求只有在指定的用户或网络下,才能解除密码而获得原来的数据,这就需要给数据发送方和接受方以一些特殊的信息用于加解密,这就是所谓的密钥。其密钥的值是从大量的随机数中选取的。按加密算法分为专用密钥和公开密钥两种。
专用密钥,又称为对称密钥或单密钥,加密时使用同一个密钥,即同一个算法。如DES和MIT的Kerberos算法。单密钥是最简单方式,通信双方必须交换彼此密钥,当需给对方发信息时,用自己的加密密钥进行加密,而在接收方收到数据后,用对方所给的密钥进行解密。这种方式在与多方通信时因为需要保存很多密钥而变得很复杂,而且密钥本身的安全就是一个问题。
DES是一种数据分组的加密算法,它将数据分成长度为6 4位的数据块,其中8位用作奇偶校验,剩余的56位作为密码的长度。第一步将原文进行置换,得到6 4位的杂乱无章的数据组;第二步将其分成均等两段 ;第三步用加密函数进行变换,并在给定的密钥参数条件下,进行多次迭代而得到加密密文。
公开密钥,又称非对称密钥,加密时使用不同的密钥,即不同的算法,有一把公用的加密密钥,有多把解密密钥,如RSA算法。
在计算机网络中,加密可分为"通信加密"(即传输过程中的数据加密)和"文件加密"(即存储数据加密)。通信加密又有节点加密、链路加密和端--端加密3种。
①节点加密,从时间坐标来讲,它在信息被传入实际通信连接点 (Physical communication link)之前进行;从OSI 7层参考模型的坐标 (逻辑空间)来讲,它在第一层、第二层之间进行; 从实施对象来讲,是对相邻两节点之间传输的数据进行加密,不过它仅对报文加密,而不对报头加密,以便于传输路由的选择。
②链路加密(Link Encryption),它在数据链路层进行,是对相邻节点之间的链路上所传输的数据进行加密,不仅对数据加密还对报头加密。
③端--端加密(End-to-End Encryption),它在第六层或第七层进行 ,是为用户之间传送数据而提供的连续的保护。在始发节点上实施加密,在中介节点以密文形式传输,最后到达目的节点时才进行解密,这对防止拷贝网络软件和软件泄漏也很有效。
在OSI参考模型中,除会话层不能实施加密外,其他各层都可以实施一定的加密措施。但通常是在最高层上加密,即应用层上的每个应用都被密码编码进行修改,因此能对每个应用起到保密的作用,从而保护在应用层上的投资。假如在下面某一层上实施加密,如TCP层上,就只能对这层起到保护作用。
值得注意的是,能否切实有效地发挥加密机制的作用,关键的问题在于密钥的管理,包括密钥的生存、分发、安装、保管、使用以及作废全过程。
(1)数字签名
公开密钥的加密机制虽提供了良好的保密性,但难以鉴别发送者, 即任何得到公开密钥的人都可以生成和发送报文。数字签名机制提供了一种鉴别方法,以解决伪造、抵赖、冒充和篡改等问题。
数字签名一般采用不对称加密技术(如RSA),通过对整个明文进行某种变换,得到一个值,作为核实签名。接收者使用发送者的公开密钥对签名进行解密运算,如其结果为明文,则签名有效,证明对方的身份是真实的。当然,签名也可以采用多种方式,例如,将签名附在明文之后。数字签名普遍用于银行、电子贸易等。
数字签名不同于手写签字:数字签名随文本的变化而变化,手写签字反映某个人个性特征, 是不变的;数字签名与文本信息是不可分割的,而手写签字是附加在文本之后的,与文本信息是分离的。
(2)Kerberos系统
Kerberos系统是美国麻省理工学院为Athena工程而设计的,为分布式计算环境提供一种对用户双方进行验证的认证方法。
它的安全机制在于首先对发出请求的用户进行身份验证,确认其是否是合法的用户;如是合法的用户,再审核该用户是否有权对他所请求的服务或主机进行访问。从加密算法上来讲,其验证是建立在对称加密的基础上的。
Kerberos系统在分布式计算环境中得到了广泛的应用(如在Notes 中),这是因为它具有如下的特点:
①安全性高,Kerberos系统对用户的口令进行加密后作为用户的私钥,从而避免了用户的口令在网络上显示传输,使得窃听者难以在网络上取得相应的口令信息;
②透明性高,用户在使用过程中,仅在登录时要求输入口令,与平常的 *** 作完全一样,Ker beros的存在对于合法用户来说是透明的;
③可扩展性好,Kerberos为每一个服务提供认证,确保应用的安全。
Kerberos系统和看**的过程有些相似,不同的是只有事先在Ker beros系统中登录的客户才可以申请服务,并且Kerberos要求申请到入场券的客户就是到TGS(入场券分配服务器)去要求得到最终服务的客户。
Kerberos的认证协议过程如图二所示。
Kerberos有其优点,同时也有其缺点,主要如下:
①、Kerberos服务器与用户共享的秘密是用户的口令字,服务器在回应时不验证用户的真实性,假设只有合法用户拥有口令字。如攻击者记录申请回答报文,就易形成代码本攻击。
②、Kerberos服务器与用户共享的秘密是用户的口令字,服务器在回应时不验证用户的真实性,假设只有合法用户拥有口令字。如攻击者记录申请回答报文,就易形成代码本攻击。
③、AS和TGS是集中式管理,容易形成瓶颈,系统的性能和安全也严重依赖于AS和TGS的性能和安全。在AS和TGS前应该有访问控制,以增强AS和TGS的安全。
④、随用户数增加,密钥管理较复杂。Kerberos拥有每个用户的口令字的散列值,AS与TGS 负责户间通信密钥的分配。当N个用户想同时通信时,仍需要N(N-1)/2个密钥
( 3 )、PGP算法
PGP(Pretty Good Privacy)是作者hil Zimmermann提出的方案, 从80年代中期开始编写的。公开密钥和分组密钥在同一个系统中,公开密钥采用RSA加密算法,实施对密钥的管理;分组密钥采用了IDEA算法,实施对信息的加密。
PGP应用程序的第一个特点是它的速度快,效率高;另一个显著特点就是它的可移植性出色,它可以在多种 *** 作平台上运行。PGP主要具有加密文件、发送和接收加密的E-mail、数字签名等。
(4)、PEM算法
保密增强邮件(Private Enhanced Mail,PEM),是美国RSA实验室基于RSA和DES算法而开发的产品,其目的是为了增强个人的隐私功能, 目前在Internet网上得到了广泛的应用,专为E-mail用户提供如下两类安全服务:
对所有报文都提供诸如:验证、完整性、防抵 赖等安全服务功能; 提供可选的安全服务功能,如保密性等。
PEM对报文的处理经过如下过程:
第一步,作规范化处理:为了使PEM与MTA(报文传输代理)兼容,按S MTP协议对报文进行规范化处理;
第二步,MIC(Message Integrity Code)计算;
第三步,把处理过的报文转化为适于SMTP系统传输的格式。
身份验证技术
身份识别(Identification)是指定用户向系统出示自己的身份z明过程。身份认证(Authertication)是系统查核用户的身份z明的过程。人们常把这两项工作统称为身份验证(或身份鉴别),是判明和确认通信双方真实身份的两个重要环节。
Web网上采用的安全技术
在Web网上实现网络安全一般有S>
评论列表(0条)