数据中心服务器技术发展趋势与应用

数据中心服务器技术发展趋势与应用,第1张

当前,为推进IT支撑系统集约化建设和运营,进一步发挥集中化能力优势,IT云成为运营商IT支撑系统建设的基础架构。但在IT云资源池部署过程中,服务器技术面临多个新挑战,主要体现在以下3个方面。


在性能方面,人工智能(AI)应用快速扩张,要求IT云采用高性能GPU服务器。AI已在电信业网络覆盖优化、批量投诉定界、异常检测/诊断、业务识别、用户定位等场景规模化应用。AI应用需求的大量出现,要求数据中心部署的服务器具有更好的计算效能、吞吐能力和延迟性能,以传统通用x86服务器为核心的计算平台显得力不从心,GPU服务器因此登上运营商IT建设的历史舞台。


在效率成本方面,IT云部署通用服务器存在弊端,催生定制化整机柜服务器应用需求。在IT云建设过程中,由于业务需求增长快速,IT云资源池扩容压力较大,云资源池中的服务器数量快速递增,上线效率亟需提高。同时,传统通用服务器部署模式周期长、部署密度低的劣势,给数据中心空间、电力、建设成本和高效维护管理都带来了较大的挑战。整机柜服务器成为IT云建设的另一可选方案。


在节能方面,AI等高密度应用场景的快速发展,驱动液冷服务器成为热点。随着AI高密度业务应用的发展,未来数据中心服务器功率将从3kW~5kW向20kW甚至100kW以上规模发展,传统的风冷式服务器制冷系统解决方案已经无法满足制冷需求,液冷服务器成为AI应用场景下的有效解决方案。


GPU服务器技术发展态势及在电信业的应用


GPU服务器技术发展态势


GPU服务器是单指令、多数据处理架构,通过与CPU协同进行工作。从CPU和GPU之间的互联架构进行划分,GPU服务器又可分为基于传统PCIe架构的GPU服务器和基于NVLink架构的GPU服务器两类。GPU服务器具有通用性强、生态系统完善的显著优势,因此牢牢占据了AI基础架构市场的主导地位,国内外主流厂商均推出不同规格的GPU服务器。


GPU服务器在运营商IT云建设中的应用


当前,电信业开始推动GPU服务器在IT云资源池中的应用,省公司现网中已经部署了部分GPU服务器。同时,考虑到GPU成本较高,集团公司层面通过建设统一AI平台,集中化部署一批GPU服务器,形成AI资源优化配置。从技术选型来看,目前运营商IT云资源池采用英伟达、英特尔等厂商相关产品居多。


GPU服务器在IT云应用中取得了良好的效果。在现网部署的GPU服务器中,与训练和推理相关的深度学习应用占主要部分,占比超过70%,支撑的业务包括网络覆盖智能优化、用户智能定位、智能营销、智能稽核等,这些智能应用减少了人工投入成本,提升了工作效率。以智能稽核为例,以往无纸化业务单据的人工稽核平均耗时约48秒/单,而AI稽核平均耗时仅约5秒/单,稽核效率提升达 90%。同时,无纸化业务单据人工稽核成本约15元/单,采用GPU进行AI稽核成本约0048元/单,稽核成本降低达968%。


整机柜服务器发展态势及在电信业的应用


整机柜服务器技术发展态势


整机柜服务器是按照模块化设计思路打造的服务器解决方案,系统架构由机柜、网络、供电、服务器节点、集中散热、集中管理6个子系统组成,是对数据中心服务器设计技术的一次根本性变革。整机柜服务器将供电单元、散热单元池化,通过节约空间来提高部署密度,其部署密度通常可以翻倍。集中供电和散热的设计,使整机柜服务器仅需配置传统机柜式服务器10%的电源数量就可满足供电需要,电源效率可以提升10%以上,且单台服务器的能耗可降低5%。


整机柜服务器在运营商IT云建设中的应用


国内运营商在IT云建设中已经推进了整机柜服务器部署,经过实际应用检验,在如下方面优势明显。


一是工厂预制,交付工时大幅缩短。传统服务器交付效率低,采用整机柜服务器将原来在数据中心现场进行的服务器拆包、上架、布线等工作转移到工厂完成,部署的颗粒度从1台上升到几十台,交付效率大大提升。以一次性交付1500台服务器为例,交付工作量可减少170~210人天,按每天配10人计算,现场交付时间可节省约17~21天。


二是资源池化带来部件数量降低,故障率大幅下降。整机柜服务器通过将供电、制冷等部件资源池化,大幅减少了部件数量,带来故障率的大幅降低。图1比较了32节点整机柜服务器与传统1U、2U服务器机型各自的电源部件数量及在一年内的月度故障率情况。由于32节点整机柜服务器含10个电源部件,而32台1U通用服务器的电源部件为64个,相较而言,整机柜电源部件数减少844%。由于电源部件数量的降低,32节点整机柜服务器相对于32台1U通用服务器的月度故障率也大幅缩减。



三是运维效率提升60%以上。整机柜服务器在工厂预制机柜布线,网络线缆在工厂经过预处理,线缆长度精确匹配,理线简洁,接线方式统一规范,配合运维标签,在运维中可以更方便简洁地对节点实施维护 *** 作,有效降低运维误 *** 作,提升运维效率60%以上,并大幅减少发生故障后的故障恢复时间。


液冷服务器技术发展态势及在电信业的应用


液冷服务器技术发展态势


液冷服务器技术也称为服务器芯片液体冷却技术,采用特种或经特殊处理的液体,直接或近距离间接换热冷却芯片或者IT整体设备,具体包括冷板式冷却、浸没式冷却和喷淋式冷却3种形态。液冷服务器可以针对CPU热岛精确定点冷却,精确控制制冷分配,能真正将高密度部署带到前所未有的更高层级(例如20kW~100kW高密度数据中心),是数据中心节能技术的发展方向之一,3种液冷技术对比如表1所示。




液冷服务器在运营商IT建设中的应用


液冷服务器技术目前在我国仍处于应用初期,产业链尚不完备、设备采购成本偏高、采购渠道少、电子元器件的兼容性低、液冷服务器专用冷却液成本高等问题是液冷服务器尚未大规模推广的重要原因。从液冷服务器在运营商数据中心领域的具体应用案例来看,运营商在IT云资源池规划和建设过程中,通常会对液冷服务器的发展现状、技术成熟度等进行分析论证。


考虑到目前液冷服务器规模化应用尚处于起步阶段,需要3~5年的引入期,因此暂时未在IT云资源池建设中进行大规模落地部署,但在部分地区有小规模应用,如中国移动南方基地数据中心已经开展液冷服务器试点应用,中国联通研究院也在开展边缘数据中心服务器喷淋式液冷系统的开发。未来,随着IT云建设规模、建设密度的继续攀升,以及液冷产业生态体系的逐步成熟,液冷服务器在IT云建设中将有更大的应用空间。


总体来看,运营商IT云资源池建设对服务器计算性能、延迟、吞吐、制冷、定制化、分布式部署等方面都提出了更高要求。未来,GPU服务器、定制化整机柜服务器、液冷服务器等新兴服务器技术将快速迭代,为运营商数据中心服务器技术的发展和演进带来新的思路和路径。

有的啊,当前市面上的GPU主机,大多数新手注册都会有一个免费的体验期。根据每个平台的属性不一样,所以体验周期和时间也是完全不一样的。根据我试用了当前各类平台的gpu来说,矩池云的新手体验效果最好。注册就有6小时免费体验,然后邀约还有新手礼包;相当合算。

首先GPU服务器是需要自己搭建的,过程繁杂 *** 作起来难度大,需要一个专业的IT支持的,相比GPU服务器来说,选择赞奇云工作站免去繁杂的搭建步骤,而且与本地电脑 *** 作无异,免去学习烦恼,而且省去it成本。

赞奇云工作站拥有专业级显卡、超大内存等多种机器配置。机器显卡更新及时,提供高配机型,海量资源可按需选择,内置软件中心提供最新软件安装包,一键下载,省去搜索时间,提高工作效率。

赞奇云工作站提供海量机器,一键申请,提供包年包月多种套餐,灵活选择,按需使用,满足各类工种所需要的机器要求,同时降低运维成本。

资讯 咨询机构IDC近日发布的《2017年中国AI基础设施市场跟踪报告》显示,2017年,中国GPU服务器市场迎来爆发式增长,市场规模为5.65亿美元(约合35亿元人民币),同比增长230.7%,约占中国X86服务器市场的6%。

该机构预测,未来五年GPU服务器市场仍将保持高速增长,2017~2022年复合增长率将超过43%。到2022年,GPU服务器的市场规模有望达到中国X86服务器市场整体规模的16%,将直接改变整个服务器市场的格局。

从厂商市场占有率来看,浪潮处于领先位置,曙光和新华三紧随其后。从行业分布来看,互联网是GPU服务器的主要用户群体,提供AIaaS的公有云服务提供商和AI解决方案提供商有望成为未来驱动市场增长的新动力。从市场趋势来看,2017年GPU服务器市场不再是一个小众的市场,几乎所有互联网用户和大量的AI初创公司都开始采购GPU服务器搭建自己的AI平台,主流的公有云厂商也都先后推出自己的AIaaS服务。

从AI生态系统建设来看,Nvidia具有明显优势,其Tesla系列产品在AI基础设施市场占据主导地位,尤其在线下训练场景中几乎垄断了市场。从其产品分布来看,P40和P100占据超过70%的市场份额,分别面向推理和训练工作负载,P4在2017年也取得了快速增长,主要面向1U紧凑型推理计算平台。

该机构中国服务器市场高级研究经理刘旭涛认为:“2017年是中国AI元年,也是AI生态和市场迅速发展的一年。在国家政策和资本的共同推动下,大量AI初创企业涌现、行业应用迅速落地。AI市场的火热推动了以GPU服务器为主的AI基础设施市场取得了爆发式增长,未来伴随AI市场的发展和繁荣,AI基础设施市场仍将保持快速增长。”他认为,目前,AI的应用以线下训练为主,使用者主要是拥有海量数据的用户群体,基础设施以GPU为主。未来,在线推理的应用将更加广泛,除了GPU,FPGA、ASIC等加速计算技术,甚至基于ARM架构的一些新的专用AI芯片都会迎来发展机遇。

腾讯云GPU 云服务器(GPU Cloud Computing)是基于 GPU 的应用于深度学习、科学计算等多种 GPU 计算场景的快速、稳定、d性的计算服务。 GPU 云服务器提供和标准云服务器一致的管理方式,管理方便快捷。同时,GPU 云服务器还提供出色的图形处理能力和高性能计算能力,拥有极致的计算性能,有效解放用户的计算压力,提升产品的计算处理效率与竞争力。计费方式有两种,一直是按量,一直是包月包年,最好是找腾讯云蓝色航线去了解比较好,他们特别专业,也有最低优惠。不过缺点就是太热情了。

国内云服务器较为著名的商家有:阿里云、腾讯云、华为云、天翼云、金山云、UCloud、青云QingCloud、百度云、盛大云、世纪互联蓝云。

1、阿里云

2009年9月,阿里巴巴集团在十周年庆典上宣布成立子公司“阿里云”,该公司将专注于云计算领域的研究和研发。“阿里云”也成为继阿里巴巴、淘宝、支付宝、阿里软件、中国雅虎之后的阿里巴巴集团第八家子公司。

阿里云计算有限公司成立于2009年9月10日,在杭州、北京和硅谷等地设有研发中心和运营机构。阿里云的目标是打造互联网数据分享第一平台,成为以数据为中心的云计算服务公司。

2、腾讯云

腾讯公司倾力打造的面向广大企业和个人的互联网+服务平台,高质量的公有云服务平台,提供云服务器/云数据库/CDN和域名注册等基础云计算服务。

腾讯云-腾讯公司倾力打造的面向广大企业和个人的公有云平台;提供云服务器、云数据库、云存储和CDN等基础云计算服务,以及提供微信、游戏、移动应用等行业解决方案。

3、华为云

华为技术有限公司,国内大型云服务与解决方案供应商,致力于为企业/政府/创新创业群体提供安全/中立/可靠的IT基础设施云服务。

华为企业云贯彻华为公司 云、管、端 的战略方针,聚焦I层,使能P层,聚合S层,为广大企业、政府和创新创业群体提供安全、中立的IT基础设施云服务。愿景是让企业像用水用电一样使用ICT服务。

4、天翼云

中国电信旗下,集市场营销/运营/产品研发于一体,专业从事云计算业务和大数据服务的云计算基础服务提供商。

中国电信股份有限公司云计算分公司(以下简称天翼云)是中国电信旗下直属专业公司,集市场营销、运营服务、产品研发于一体,专注于成为亚太云计算基础服务提供商。2016年,天翼云推出了“2+31+x”资源池战略布局,依托自主研发的云平台和5s安全体系,以及运营商央企底蕴与互联网创新机制,为用户提供安全云服务。

天翼云为用户提供云主机、云存储、云备份、桌面云、专享云、混合云、CDN、大数据等全线产品,同时为政府、医疗、教育、金融等行业打造定制化云解决方案。天翼云还为“互联网+”在各行业落地以及“大众创业、万众创新”提供坚实的承载。

5、金山云

金山云是金山集团旗下控股公司,依托金山集团26年的深厚技术积累,以业内领先的用户体验和服务端技术,为用户和企业提供国内领军级云服务产品。

公司拥有云主机、海量云存储、负载均衡、云关系型数据库等多项核心业务。其中,"天蝎"云主机以其高性能为特点,为客户带来极速体验,轻松应对高负荷业务;RDS产品的高可扩展性可帮助客户实现动态配置资源,以应对业务的剧烈变化;负载均衡产品能够帮助客户应对高峰流量和单点故障,大大提升业务的稳定性。

6、UCloud

致力于研发并提供计算资源/存储资源/网络资源等企业必需的基础IT架构服务,专注于基础云计算产品研发与运营的综合性企业。

UCloud (优刻得科技股份有限公司)是国内前沿的云计算服务平台,坚持中立,不涉足客户业务领域,专注于打造一个安全、可信赖的云计算服务平台。

自主研发IaaS、PaaS、AI服务平台、大数据流通平台等一系列云计算产品,并深入了解互联网、传统企业不同场景下的业务需求,提供公有云、私有云、混合云、专有云在内的综合性行业解决方案。

依托国内北、上、广、深、杭等11地线下服务站,以及在全球各地部署的29大节能绿色数据中心,包括莫斯科、圣保罗、拉各斯、伦敦等,UCloud已为8万多个用户提供了优质服务,间接服务用户数量超过10亿,部署在UCloud平台上的客户业务总产值逾千亿人民币。

7、青云QingCloud

企业级全栈云 ICT 服务商和解决方案提供商,基于云模式的综合企业服务平台,实现公有云、私有云、混合云和托管云的一致化交付与统一管理。

青云QingCloud 是一家企业级全栈云 ICT 服务商和解决方案提供商,也是一个基于云模式的综合企业服务平台。青云QingCloud 专注于为企业用户提供安全、性能出众、按需、实时的 ICT 资源与管理服务,并携手众多生态合作伙伴共同构建云端综合企业服务交付平台。

8、百度云

百度推出的公有云平台,覆盖云计算、大数据、O2O等热点技术领域,向开发者共享百度核心技术、数据和资源等的高性能云计算产品的品牌。

百度开放云是百度在多年技术积累、汇集上万名国内外技术专家的基础上,通过开放百度核心基础架构技术,为广大公有云需求者提供的全系列易用的高性能云计算产品。

9、盛大云

上海盛大网络发展有限公司,盛大云,盛大集团旗下,国内较早推出按需计费的云主机,基于Key-Value的云存储,致力于提供定制云服务和园区综合云方案的科技型企业

盛大云(>

10、世纪互联蓝云

上海蓝云母公司世纪互联(NASDAQ: VNET)是中国较大的中立电信互联网基础设施服务提供商,并于2011 年4月在纳斯达克成功上市。世纪互联向客户提供业界服务器及网络设备托管服务、管理式网络服务、内容分发网络及云计算服务。世纪互联在全国40多个城市运营80多家分布式数据中心,拥有超过2000家多样化的稳定客户群体。

2012年11月,微软、世纪互联和上海市政府共同宣布战略合作伙伴协议,由微软向世纪互联授权技术,世纪互联成立全资子公司在中国运营并向中国客户提供 Office 365 和 Windows Azure 的服务。

选购要点

一、云服务器商的机房实力

通常国内的很多IDC服务商所运营的机房也不一样,根据机房环境不同,云服务质量也差异很大。小机房易出问题,稳定性差,带宽规模小。电信级大机房标准化设计,设备品质高。

二、云服务器的带宽质量

云服务器虽建立在集群服务器之上,但性能受带宽直接影响,购买租用之前,我们需要测试一下其网络的ping值速度,看看带宽是否充足。

三、云服务器硬件配置

云服务器通常可自选CPU、内存、硬盘等配置,搭载这些配置的硬件资源非常重要,直接关系到云服务器的响应速度、稳定运行的速度。

四、云服务器租用价格

大家有时候不要看某些云服务商提供的云主机价格比较低,可能其技术能力和售后水平也低,出现问题难以及时处理。因此,我们在比对价格的同时,也要特别关注服务商的技术服务能力以及客服响应速度。


欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/zz/13276233.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-07-06
下一篇 2023-07-06

发表评论

登录后才能评论

评论列表(0条)

保存