1 利用USB口和USB连接线:
电脑可以将手机客户端作为一个终端访问,此时需要一款第三方软件,比如金山手机、豌豆荚、360等等。
也可以将手机作为一个外部存储器直接访问手机的存储位置来传递文件。
2利用手机和电脑的蓝牙,采用蓝牙进行通讯。蓝牙通讯的距离一般小于10米。蓝牙建立连接之后,一般蓝牙的协议之中带有终端访问功能,可以直接传输文件。
3利用wifi,两者都连接本地或公共wifi手机通常有wifi,如果电脑没有无线,用有线连接网络也可以:
通过共享文件夹的方式,互相访问传输文件。
也可以安装第三方FTP服务端和客户端软件,实现FTP文件传输。
或者利用邮箱,自己发给自己,自己在另一个设备上接收下载完成文件传输。
4还有一种方法,就是两者都安装微信,同时开通他们,在微信中传输文件,另一台机器上将文件下载下来就可以了。
可能还有其他方法,取决于你对这些机器的理解程度。因为他们实际上都是网络上的一个节点。问题一:计算机通信的本质是什么 个人认为计算机通信的本质就是数据的交换和交互。
问题二:计算机通信的主要原理是什么 不知您所说的是串口通信还是广义上的计算机通信
广义上应是TCP/IP协议
建议您看一看 william stallings 的《数据与计算机通信》,相信会大有收获
问题三:计算机通信系统是什么 什么是计算机网络?简单地说,计算机网络就是通过电缆、电话或无线通讯将两台以上的计算机互边起来的 。按计算机联网的地理位置划分,网络一般有两大类:广域网和局域网。
Internet网(因特网,许多人也称其为互联网)是最典型的广域网,它们通常连接着范围非常巨大的区域。我国比较著名的因特网中国科技信息因特网(NCFC)、中国公用计算机的因特网(CHINANET)、中国教育和科研因特网(CERNET)和中国公用经济信息因特网(CHINAGBN)也属于广域网。局域网是目前应用最为广泛的网络,例如你所在电大计算机网络就是一个局域网,我们通常也把它称之为校园网。局域网通常也提供接口与广域网相连。
进入90年代后,世界经济发展的--个显著特点是以信息技术为先导的高技术产业突飞猛进,电子计算机不断渗透到传统工业的各个领域,推动国民经济迅速发展。信息的交换、存储、处理和利用将更多地通过计算机进行。各种计算机不再是封闭的终端,而将同电话、电视机一样使用方便,接入数据网络便可共享数据库资源和网络设备资源。
计算机通信网络是计算机技术和通信技术相结合而形成的一种新通信方式,主要是满足数据通信的需要。它将不同地理位置、具有独立功能的多台计算机、终端及附属设备用通信链路连接起来,并配备相应的网络软件,以实现通信过程中资源共享而形成的通信系统。它不仅可以满足局部地区的一个企业、公司、学校和办公机构的数据、文件传输需要,而且可以在一个国家甚至全世界范围进行信息交换、储存和处理,同时可以提供话音、数据和图像的综合 ,具有诱人的发展前景。
问题四:计算机网络属于什么通信 常见的网络通信协议有:TCP/IP协议、IPX/SPX协议、NetBEUI协议等。
TCP/IP协议
TCP/IP(Tran ission Control Protocol/Internet Protocol,传输控制协议/网际协议) 协议具有很强的灵活性,支持任意规模的网络,几乎可连接所有服务器和工作站。在使用TCP/IP协议时需要进行复杂的设置,每个结点至少需要一个“IP地址”、一个“子网掩码”、一个“默认网关”、一个“主机名”,对于一些初学者来说使用不太方便。[1]
IPX/SPX及其兼容协议
IPX/SPX(Internetwork Packet Exchange/Sequences Packet Exchange,网际包交换/顺序包交换)是Novell公司的通信协议集。IPX/SPX具有强大的路由功能,适合于大型网络使用。当用户端接入NetWare服务器时,IPX/SPX及其兼容协议是最好的选择。但在非Novell网络环境中,IPX/SPX一般不使用。
NetBEUI协议
NetBEUI(NetBios Enhanced User Interface , NetBios增强用户接口)协议是一种短小精悍、通信效率高的广播型协议,安装后不需要进行设置,特别适合于在“网络邻居”传送数
TCP/IP分层协议
TCP/IP参考模型是首先由ARPANET所使用的网络体系结构,共分为四层:网络接口层(又称链路层)、网络层(又称互联层)、传输层和应用层,每一层都呼叫它的下一层所提供的网络来完成自己的需求。
每一层对应的协议有:
网络接口层协议:Ethernet 8023、Token Ring 8025、X25、Frame relay、HDLC、PPP ATM等。
网络层协议:IP(Internet Protocol,英特网协议)、ICMP(Internet Control Message Protocol,控制报文协议)、ARP(Address Resolution Protocol,地址转换协议)、RARP(Reverse ARP,反向地址转换协议)。
传输层协议: TCP(Tran ission Control Protocol,传输控制协议)和UDP(User Datagram protocol,用户数据报协议)。
应用层协议:FTP(File Transfer Protocol,文件传输协议)、TELNET(用户远程登录服务协议)、DNS(Domain Name Service,是域名解析服务)、SMTP(Simple Mail Transfer Protocol,简单邮件传输协议)、NFS(Network File System,网络文件系统)、>从通信和信息处理的角度看,运输层向它上面的应用层提供通信服务,它属于面向通信部分的最高层,同时也是用户功能中的最低层。当网络的边缘部分中的两台主机使用网络的核心部分的功能进行端到端的通信时,只有主机的协议栈才有运输层,而网络核心部分中的路由器在转发分组时都只用到下三层的功能。
设局域网LAN1上的主机A和局域网LAN2上的主机B通过互连的广域网WAN进行通信。我们知道,IP协议能够把源主机A发送出的分组,按照首部中的目的地址,送交到目的主机B,那么,为什么还需要运输层呢?
从IP层来说,通信的两端是两台主机。IP数据报的首部明确地标志了这两台主机的IP地址真正进行 通信的实体是在主机中的进程,是这台主机中的一个进程和另一台主机中的一个进程在交换数据(即通信) 。 两台主机进行通信 就是两台主机中的 应用进程 互相 通信 。IP协议虽然能把分组送到目的主机,但是这个分组还停留在主机的网络层而没有交付主机中的应用进程。从运输层的角度看, 通信的真正端点并不是主机而是主机中的进程 。也就是说, 端到端的通信是应用进程之间的通信 。在一台主机中经常有多个应用进程同时分别和另一台主机中的多个应用进程通信。
例如,某用户在使用浏览器查找某网站的信息时,其主机的应用层运行浏览器客户进程。如果在浏览网页的同时,还要用电子邮件给网站发送反馈意见,那么主机的应用层就还要运行电子邮件的客户进程。在图5-1中,主机A的应用进程AP1和主机B的应用进程AP3通信,而与此同时,应用进程AP2也和对方的应用进程AP4通信。这表明运输层有一个很重要的功能一 复用(multiplexing)和分用(demultiplexing) 。这里的“复用”是指在发送方不同的应用进程都可以使用同一个运输层协议传送数据(当然需要加上适当的首部),而“分用”是指接收方的运输层在剥去报文的首部后能够把这些数据正确交付目的应用进程 ① 。图5-1中两个运输层之间有一个双向粗箭头,写明“运输层提供应用进程间的逻辑通信”。“逻辑通信”的意思是:从应用层来看,只要把应用层报文交给下面的运输层,运输层就可以把这报文传送到对方的运输层(哪怕双方相距很远,例如几千公里),好像这种通信就是沿水平方向直接传送数据。但事实上这两个运输层之间并没有一条水平方向的物理连接。数据的传送是沿着图中的虚线方向(经过多个层次)传送的。“逻辑通信”的意思是“好像是这样通信,但事实上并非真的这样通信”。
①注:IP层也有复用和分用的功能。即,在发送方不同协议的数据都可以封装成P数据报发送出去,而在接收方的IP层根据IP首部中的协议字段进行分用,把剥去首部后的数据交付应当接收这些数据的协议。
网络层为主机之间提供逻辑通信,而运输层为应用进程之间提供端到端的逻辑通信(见图5-2) 。运输层还具有网络层无法代替的许多其他重要功能。
运输层还要对收到的报文进行差错检测,在网络层,IP数据报首部中的检验和字段,只检验首部是否出现差错而不检查数据部分。
根据应用程序的不同需求,运输层需要有两种不同的运输协议,即 面向连接的TCP和无连接的UDP 。运输层向高层用户屏蔽了下面网络核心的细节(如网络拓扑、所采用的路由选择协议等),它使应用进程看见的就是好像在两个运输层实体之间有一条端到端的逻辑通信信道,但这条逻辑通信信道对上层的表现却因运输层使用的不同协议而有很大的差别。 当运输层采用面向连接的TCP协议时,网络是不可靠的(只提供尽最大努力服务),但这种逻辑通信信道就相当于一条全双工的可靠信道。但当运输层采用无连接的UDP协议时,这种逻辑通信信道仍然是一条不可靠信道。
TCP/P运输层的两个主要协议都是互联网的正式标准:用户数据报协议UDP(User Datagram Protocol);传输控制协议TCP(Transmission Control Protocol)。
两个对等运输实体在通信时传送的数据单位叫做运输协议数据单元TPDU(Transport Protocol Data Unit)。但在TCP/IP体系中,则根据所使用的协议是TCP或UDP,分别称之为TCP报文段(segment)或UDP用户数据报。
UDP在传送数据之前不需要先建立连接。远地主机的运输层在收到UDP报文后,不需要给出任何确认。虽然UDP不提供可靠交付,但在某些情况下UDP却是一种最有效的工作方式。
TCP则提供面向连接的服务。在传送数据之前必须先建立连接,数据传送结束后要释放连接。TCP不提供广播或多播服务。由于TCP要提供可靠的、面向连接的运输服务,因此不可避免地增加了许多的开销,如确认、流量控制、计时器以及连接管理等。这不仅使协议数据单元的首部增大很多,还要占用许多的处理机资源。
前面己经提到过运输层的复用和分用功能。其实在日常生活中也有很多复用和分用的例子。假定一个机构的所有部门向外单位发出的公文都由收发室负责寄出,这相当于各部门都“复用”这个收发室。当收发室收到从外单位寄来的公文时,则要完成“分用”功能,即按照信封上写明的本机构的部门地址把公文正确进行交付。
运输层的复用和分用功能也是类似的。应用层所有的应用进程都可以通过运输层再传送到IP层(网络层),这就是复用。运输层从IP层收到发送给各应用进程的数据后,必须分别交付指明的各应用进程,这就是分用。显然,给应用层的每个应用进程赋予一个非常明确的标志是至关重要的。
我们知道,在单个计算机中的进程是用进程标识符(一个不大的整数)来标志的。但是在互联网环境下,用计算机 *** 作系统所指派的这种进程标识符来标志运行在应用层的各种应用进程则是不行的。这是因为在互联网上使用的计算机的 *** 作系统种类很多,而不同的 *** 作系统又使用不同格式的进程标识符。为了使运行不同 *** 作系统的计算机的应用进程能够互相通信,就必须用统一的方法(而这种方法必须与特定 *** 作系统无关)对TCP/IP体系的应用进程进行标志。
但是,把一个特定机器上运行的特定进程,指明为互联网上通信的最后终点还是不可行的。这是因为进程的创建和撤销都是动态的,通信的一方几乎无法识别对方机器上的进程。另外,我们往往需要利用目的主机提供的功能来识别终点,而不需要知道具体实现这个功能的进程是哪一个(例如,要和互联网上的某个邮件服务器联系,并不一定要知道这个服务器功能是由目的主机上的哪个进程实现的)。
解决这个问题的方法就是在运输层使用 协议端口号 (protocol port number),或通常简称为端口(port)。这就是说,虽然通信的终点是应用进程,但只要把所传送的报文交到目的主机的某个合适的目的端口,剩下的工作(即最后交付目的进程)就由TCP或UDP来完成。
请注意,这种在协议栈层间的抽象的协议端口是软件端口,和路由器或交换机上的硬件端口是完全不同的概念。 硬件端口是不同硬件设备进行交互的接口,而软件端口是应用层的各种协议进程与运输实体进行层间交互的一种地址 。不同的系统具体实现端口的方法可以是不同的(取决于系统使用的 *** 作系统)。
TCP/IP的运输层用一个16位端口号来标志一个端口。但请注意,端口号只具有本地意义,它只是为了标志本计算机应用层中的各个进程在和运输层交互时的层间接口。在互联网不同计算机中,相同的端口号是没有关联的。16位的端口号可允许有65535个不同的端口号,这个数目对一个计算机来说是足够用的。
由此可见,两个计算机中的进程要互相通信,不仅必须知道对方的P地址(为了找到对方的计算机),而且要知道对方的端口号(为了找到对方计算机中的应用进程)。这和我们寄信的过程类似。当我们要给某人写信时,就必须在信封上写明他的通信地址(这是为了找到他的住所,相当于P地址),并且还要写上收件人的姓名(这是因为在同一住所中可能有好几个人,这相当于端口号)。在信封上还写明自己的地址。当收信人回信时,很容易在信封上找到发信人的地址。互联网上的计算机通信是采用客户-服务器方式。客户在发起通信请求时,必须先知道对方服务器的P地址和端口号。因此运输层的端口号分为下面的两大类。
(1)服务器端使用的端口号这里又分为两类,最重要的一类叫做熟知端口号(welknown port number))或系统端口号,数值为0-l023。这些数值可在网址>
此处应该填写对等。
即原话为计算机网络有两种基本的工作模式,它们是对等模式和客户/服务器模式。
对等模式(P2P,peer-to-peer)是一种通信模式,其中每一方都拥有相同的功能,任何一方都可以启动通信会话。
客户/服务器模式(Client–server model)简称C/S结构,是一种网络架构,它把客户端 (Client) 与服务器 (Server) 区分开来。每一个客户端软件的实例都可以向一个服务器或应用程序服务器发出请求。
拓展:
两者特点:
对等网络:简单方便,但是难于管理,且安全性能比较差。
客户/服务器:更安全,更稳定,但相对也更复杂。
参考资料:
对等网络 百度百科
客户/服务器方式 百度百科
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)