阿里云服务器ECS如何选择?很多新手用户并不知道PTS是什么,如果你不知道如何选择阿里云服务器ECS产品,性能测试PTS可以很好的帮助你快速对云服务器进行压力测试,从而助你选择适合自己的阿里云服务器ECS,下面是性能测试PTS详解!
阿里云开发者社区最近推出了一个“ ECS 选款利器!PTS助您快速上云 ”活动,PTS性能压测包仅需099/月起,真实模拟,免去繁琐的搭建和维护成本!现在您可以只支付10块钱不到的试用成本,即可体验使用 PTS 来帮助 ECS 进行容量规划选择合适规格的整个流程!
完成动手实验的同学,即可参与抽奖活动,小米手环 6、蓝牙键盘、掌上游戏机、笔记本支架、 数据线、优惠券等丰富奖品等您来拿!限量 1500 份,抽奖即得,百分百中奖哦!
性能测试PTS(Performance Testing Service)是具备强大的分布式压测能力的SaaS压测平台,可模拟海量用户的真实业务场景,全方位验证业务站点的性能、容量和稳定性。
PTS旨在简化性能压测本身的工作。
PTS目标是将性能压测本身的工作持续简化,使您可以将更多的精力回归到关注业务和性能问题本身。在PTS平台上,您可以用较低的人力和资源成本,构造出最接近真实业务场景的复杂交互式流量,快速衡量系统的业务性能状况,为性能问题定位、容量配比、全链路压测的流量构造提供最好的帮助。进而提升用户体验,促进业务发展,最大程度实现企业的商业价值。
业务场景
PTS广泛应用于各种压力测试和性能测试场景,包括但不限于以下场景:
PTS孵化于服务阿里巴巴全生态五年以上的单链路、全链路压测平台,是阿里巴巴内部最佳实践的输出。该平台对内除了支持日常的外部流量压测之外,同时支持了大大小小的促销活动,如天猫双11、双12和年货节等。
压测流程
PTS提供全面高效的压测流程:
压测流程说明:
1在PTS控制台上,准备压测API数据,构造压测场景,定义压测模式、量级等;支持随时启停压测,压测过程中可调速。
2压测启动后,PTS后台的压测控制中心将自动调度压测数据、压测任务和压测引擎。
3通过随机调度全国上百个城市和运营商的内容分发网络CDN (Content Delivery Network)节点,发起压测流量。保证从虚拟用户并发量、压测流量的分散度等维度都接近真正的用户行为,压测结果更加全面和真实可信。
4通过压测引擎向您指定的业务站点发起压测。
5压测过程中,通过集成云监控、ARMS(应用实时监控服务)产品,结合PTS自有的监控指标,实时采集压测数据。
6在PTS控制台,实时展现压测数据,进行过程监控;压测结束后,生成压测报告。基于整个压测场景的性能表现,定位性能问题、发现系统瓶颈。
压测创建方式
PTS支持以下4种方式创建压测场景(或称压测用例),如下图所示:
说明:
方式一:PTS自研零编码可视化编排,使用自研强大引擎压测。
方式二: 使用PTS自研云端录制器,零侵入录制业务请求并导入1中的自研交互中进行进一步设置。
方式三: 将导入脚本压测 1中的PTS自研交互中,使用PTS自研引擎。
方式四:JMeter压测并使用原生JMeter引擎进行压测,PTS提供自定义的压力构造和监控数据汇聚等产品服务。
其中,方式一、二、三由于使用了PTS的自研引擎,具备RPS(Requests per Second)吞吐量压测模式、秒级启动、实时控制、定时压测和流量遍布全国运营商网络的差异化能力。
方式一是PTS最核心的一种压测场景创建方式,所有资源包均可使用。其他几种创建方式面向不同规格资源包开放。
适用于多业务场景
不论您处于哪个行业,在以下业务场景(但不限于),PTS都是您值得信赖的性能测试工具。
适用行业广泛
PTS应用行业广泛,涉及电商、多媒体、金融保险、物流快递、广告营销、社交等等。
PTS服务阿里巴巴全生态多年,支持了天猫双11、双12、年货节等大促活动。植根于电商行业的PTS,对电商的典型业务模型支持得更友好,压测来源更广泛,脉冲能力和流量掌控能力更强。
PTS自商业版发布以来,吸引了来自多媒体、金融保险、政务等众多行业的用户,以其强大的压测场景编排能力和报表能力,帮助用户快速发现问题,进行针对性地调优,提升了系统承压能力。
适用于多种网络环境
不论您的业务位于公有云、专有云、混合云或者自建IDC中,只要能够通过公网访问,PTS都能够通过遍布全国上百个城市和各运营商的CDN节点发起压测流量,最大程度地模拟真实业务场景。
适用于使用>选择云服务器,有几个参考指标和维度,CPU和内存,还有硬盘和带宽、 *** 作系统等,不同的场景不同的流量,配置也不一样。一般刚建的网站,不多的话,带宽有个2M就够了。
*** 作系统看个人喜好,你熟悉哪个就用哪个吧,现在比较主流的云服务器,像小鸟云的,提供镜像还比较方便,同时小鸟云研发的小鸟云管家工具可以免安装或者一键部署。
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)