主要从以下几个方面理解大数据时代。
第一,大数据产生的背景。
1由于电子终端产品和互联网络的普及为大数据提供了良好的硬件支撑。电脑和手机的普及为数据积累提供了数据源头,互联网为数据积累提供了路径,服务器为大数据积累提供了载体,超速运算为大数据分析提供了便捷,所以大数据的产生有了良好基础。
2互联网经济发展推进了大数据时代的发展。由于互联网经济和各平台的竞争发展,各平台要完成精准的推送,提升服务或是产品销售针对性,对数据进行了大量分析,一直演进成为大数据分析的必然。
第二,大数据的意义
1推动经济发展。由于大数据的分析可以更精准的对消费者进行推送,并且完成最后的交易,这样无形中对于经济的发展起到了非常大的推动作用。
2推动生活便利化。有了大数据的分析,加上智能化的发展,无论是出行导航,还是搜索引擎,都为生活的便利提供了很多便捷之处。
第三,大数据的利弊。
凡事都有两面性,尤其是对于不同的人而言。大数据的发展必然是好的,有利的,也是时代发展的必然,为生活的各方面都提供了非常好的帮助。但是也有人利用大数据的分析做一些不利于他人的事情,比如一些数据买卖,泄露个人数据都暴露了大数据时代的一些隐患,所以如何防范大数据时代数据被一些别有用心的人利用也是要我们防范的。
总之,大数据的到来是科技时代进步的表现,它的发展会越来越强大,起到的作用也会越来越多,让我们一起关注它的发展吧!
1,大数据(bigdata),指无法在一定时间范围内用常规软件工具进行捕捉、管理和处理的数据集合,是需要新处理模式才能具有更强的决策力、洞察发现力和流程优化能力的海量、高增长率和多样化的信息资产
2,大数据与云计算的关系就像一枚硬币的正反面一样密不可分。大数据必然无法用单台的计算机进行处理,必须采用分布式计算架构。它的特色在于对海量数据的挖掘,但它必须依托云计算的分布式处理、分布式数据库、云存储和虚拟化技术。
他俩之间的关系你可以这样来理解,云计算技术就是一个容器,大数据正是存放在这个容器中的水,大数据是要依靠云计算技术来进行存储和计算的。
扩展资料:
大数据的4V特点:Volume(大量)、Velocity(高速)、Variety(多样)、Value(价值)。
云计算的关键词在于“整合”,无论你是通过现在已经很成熟的传统的虚拟机切分型技术,还是通过google后来所使用的海量节点聚合型技术,他都是通过将海量的服务器资源通过网络进行整合,调度分配给用户,从而解决用户因为存储计算资源不足所带来的问题。
大数据正是因为数据的爆发式增长带来的一个新的课题内容,如何存储如今互联网时代所产生的海量数据,如何有效的利用分析这些数据等等。
大数据的趋势:
趋势一:数据的资源化
何为资源化,是指大数据成为企业和社会关注的重要战略资源,并已成为大家争相抢夺的新焦点。因而,企业必须要提前制定大数据营销战略计划,抢占市场先机。
趋势二:与云计算的深度结合
大数据离不开云处理,云处理为大数据提供了d性可拓展的基础设备,是产生大数据的平台之一。自2013年开始,大数据技术已开始和云计算技术紧密结合,预计未来两者关系将更为密切。除此之外,物联网、移动互联网等新兴计算形态,也将一齐助力大数据革命,让大数据营销发挥出更大的影响力。
趋势三:科学理论的突破
随着大数据的快速发展,就像计算机和互联网一样,大数据很有可能是新一轮的技术革命。随之兴起的数据挖掘、机器学习和人工智能等相关技术,可能会改变数据世界里的很多算法和基础理论,实现科学技术上的突破。
42 brokerKafka 集群包含一个或多个服务器,服务器节点称为broker。
broker存储topic的数据。如果某topic有N个partition,集群有N个broker,那么每个broker存储该topic的一个partition。
如果某topic有N个partition,集群有(N+M)个broker,那么其中有N个broker存储该topic的一个partition,剩下的M个broker不存储该topic的partition数据。
如果某topic有N个partition,集群中broker数目少于N个,那么一个broker存储该topic的一个或多个partition。在实际生产环境中,尽量避免这种情况的发生,这种情况容易导致Kafka集群数据不均衡。
43 Topic
每条发布到Kafka集群的消息都有一个类别,这个类别被称为Topic。(物理上不同Topic的消息分开存储,逻辑上一个Topic的消息虽然保存于一个或多个broker上但用户只需指定消息的Topic即可生产或消费数据而不必关心数据存于何处)
类似于数据库的表名
43 Partition
topic中的数据分割为一个或多个partition。每个topic至少有一个partition。每个partition中的数据使用多个segment文件存储。partition中的数据是有序的,不同partition间的数据丢失了数据的顺序。如果topic有多个partition,消费数据时就不能保证数据的顺序。在需要严格保证消息的消费顺序的场景下,需要将partition数目设为1。
44 Producer
生产者即数据的发布者,该角色将消息发布到Kafka的topic中。broker接收到生产者发送的消息后,broker将该消息追加到当前用于追加数据的segment文件中。生产者发送的消息,存储到一个partition中,生产者也可以指定数据存储的partition。
45 Consumer
消费者可以从broker中读取数据。消费者可以消费多个topic中的数据。
46 Consumer Group
每个Consumer属于一个特定的Consumer Group(可为每个Consumer指定group name,若不指定group name则属于默认的group)。
47 Leader
每个partition有多个副本,其中有且仅有一个作为Leader,Leader是当前负责数据的读写的partition。
48 Follower
Follower跟随Leader,所有写请求都通过Leader路由,数据变更会广播给所有Follower,Follower与Leader保持数据同步。如果Leader失效,则从Follower中选举出一个新的Leader。当Follower与Leader挂掉、卡住或者同步太慢,leader会把这个follower从“in sync replicas”(ISR)列表中删除,重新创建一个Follower。
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)