它的目的就通过调度集群,达到最佳化资源使用,最大化吞吐率,最小化响应时间,避免单点过载的问题。
负载均衡可以根据网络协议的层数进行分类,我们这里以ISO模型为准,从下到上分为:
物理层,数据链路层,网络层,传输层,会话层,表示层,应用层。
当客户端发起请求,会经过层层的封装,发给服务器,服务器收到请求后经过层层的解析,获取到对应的内容。
二层负债均衡是基于数据链路层的负债均衡,即让负债均衡服务器和业务服务器绑定同一个虚拟IP(即VIP),客户端直接通过这个VIP进行请求,那么如何区分相同IP下的不同机器呢?没错,通过MAC物理地址,每台机器的MAC物理地址都不一样,当负载均衡服务器接收到请求之后,通过改写>
Seata框架是一个业务层的XA(两阶段提交)解决方案。在理解Seata分布式事务机制前,我们先回顾一下数据库层面的XA方案。
Seata 是一款开源的分布式事务解决方案,致力于提供高性能和简单易用的分布式事务服务。Seata 将为用户提供了 AT、TCC、SAGA 和 XA 事务模式,为用户打造一站式的分布式解决方案。
Transaction Coordinator (TC): 事务协调器,维护全局事务的运行状态,负责协调并驱动全局事务的提交或回滚。
Transaction Manager (TM): 控制全局事务的边界,负责开启一个全局事务,并最终发起全局提交或全局回滚的决议。
分布式事务是指 *** 作多个数据库之间的事务,在tomcat下是没有分布式事务的,可以借助于第三方Jotm和Automikos实现,下面就写一个使用Jotm实现分布事务的例子,如有不足,请各位大大指点:
Dao及实现,先写出一个interface再去实现他,可能有些人觉得直接写实现类多好,但我还是建议为了结构清晰,增强代码的可读性,可维护性还是先写接口再去实现的好:
先写一个interface,定义要实现的方法:
实现接口,传入一个String ds来判断调用哪个JdbcTemplate:
service及实现:
还是接口与他的实现:
持久化的 *** 作:
applicationContextxml
基本的spring配置以及Jotm bean;
JTA事务管理器,数据源datasourceA和datasourceB配置:
事务切面配置aop,通知配置以及dao,service配置:
单元测试,在实际项目中就是写一个controller:
分布式架构的演进系统架构演化历程-初始阶段架构
初始阶段 的小型系统 应用程序、数据库、文件等所有的资源都在一台服务器上通俗称为LAMP
特征:
应用程序、数据库、文件等所有的资源都在一台服务器上。
描述:
通常服务器 *** 作系统使用Linux,应用程序使用PHP开发,然后部署在Apache上,数据库使用MySQL,汇集各种免费开源软件以及一台廉价服务器就可以开始系统的发展之路了。
系统架构演化历程-应用服务和数据服务分离
好景不长,发现随着系统访问量的再度增加,webserver机器的压力在高峰期会上升到比较高,这个时候开始考虑增加一台webserver
特征:
应用程序、数据库、文件分别部署在独立的资源上。
描述:
数据量增加,单台服务器性能及存储空间不足,需要将应用和数据分离,并发处理能力和数据存储空间得到了很大改善。
系统架构演化历程-使用缓存改善性能
特征:
数据库中访问较集中的一小部分数据存储在缓存服务器中,减少数据库的访问次数,降低数据库的访问压力。
描述:
系统访问特点遵循二八定律,即80%的业务访问集中在20%的数据上。
缓存分为本地缓存和远程分布式缓存,本地缓存访问速度更快但缓存数据量有限,同时存在与应用程序争用内存的情况。
系统架构演化历程-使用应用服务器集群
在做完分库分表这些工作后,数据库上的压力已经降到比较低了,又开始过着每天看着访问量暴增的幸福生活了,突然有一天,发现系统的访问又开始有变慢的趋势了,这个时候首先查看数据库,压力一切正常,之后查看webserver,发现apache阻塞了很多的请求,而应用服务器对每个请求也是比较快的,看来 是请求数太高导致需要排队等待,响应速度变慢
特征:
多台服务器通过负载均衡同时向外部提供服务,解决单台服务器处理能力和存储空间上限的问题。
描述:
使用集群是系统解决高并发、海量数据问题的常用手段。通过向集群中追加资源,提升系统的并发处理能力,使得服务器的负载压力不再成为整个系统的瓶颈。
系统架构演化历程-数据库读写分离
享受了一段时间的系统访问量高速增长的幸福后,发现系统又开始变慢了,这次又是什么状况呢,经过查找,发现数据库写入、更新的这些 *** 作的部分数据库连接的资源竞争非常激烈,导致了系统变慢
特征:
多台服务器通过负载均衡同时向外部提供服务,解决单台服务器处理能力和存储空间上限的问题。
描述:
使用集群是系统解决高并发、海量数据问题的常用手段。通过向集群中追加资源,使得服务器的负载压力不在成为整个系统的瓶颈。
系统架构演化历程-反向代理和CDN加速
特征:
采用CDN和反向代理加快系统的 访问速度。
描述:
为了应付复杂的网络环境和不同地区用户的访问,通过CDN和反向代理加快用户访问的速度,同时减轻后端服务器的负载压力。CDN与反向代理的基本原理都是缓存。
系统架构演化历程-分布式文件系统和分布式数据库
随着系统的不断运行,数据量开始大幅度增长,这个时候发现分库后查询仍然会有些慢,于是按照分库的思想开始做分表的工作
特征:
数据库采用分布式数据库,文件系统采用分布式文件系统。
描述:
任何强大的单一服务器都满足不了大型系统持续增长的业务需求,数据库读写分离随着业务的发展最终也将无法满足需求,需要使用分布式数据库及分布式文件系统来支撑。
分布式数据库是系统数据库拆分的最后方法,只有在单表数据规模非常庞大的时候才使用,更常用的数据库拆分手段是业务分库,将不同的业务数据库部署在不同的物理服务器上。
系统架构演化历程-使用NoSQL和搜索引擎
特征:
系统引入NoSQL数据库及搜索引擎。
描述:
随着业务越来越复杂,对数据存储和检索的需求也越来越复杂,系统需要采用一些非关系型数据库如NoSQL和分数据库查询技术如搜索引擎。应用服务器通过统一数据访问模块访问各种数据,减轻应用程序管理诸多数据源的麻烦。
系统架构演化历程-业务拆分
特征:
系统上按照业务进行拆分改造,应用服务器按照业务区分进行分别部署。
描述:
为了应对日益复杂的业务场景,通常使用分而治之的手段将整个系统业务分成不同的产品线,应用之间通过超链接建立关系,也可以通过消息队列进行数据分发,当然更多的还是通过访问同一个数据存储系统来构成一个关联的完整系统。
纵向拆分:
将一个大应用拆分为多个小应用,如果新业务较为独立,那么就直接将其设计部署为一个独立的Web应用系统
纵向拆分相对较为简单,通过梳理业务,将较少相关的业务剥离即可。
横向拆分:将复用的业务拆分出来,独立部署为分布式服务,新增业务只需要调用这些分布式服务
横向拆分需要识别可复用的业务,设计服务接口,规范服务依赖关系。
系统架构演化历程-分布式服务
特征:
公共的应用模块被提取出来,部署在分布式服务器上供应用服务器调用。
描述:
随着业务越拆越小,应用系统整体复杂程度呈指数级上升,由于所有应用要和所有数据库系统连接,最终导致数据库连接资源不足,拒绝服务。
Q:分布式服务应用会面临哪些问题?
A:
(1) 当服务越来越多时,服务URL配置管理变得非常困难,F5硬件负载均衡器的单点压力也越来越大。
(2) 当进一步发展,服务间依赖关系变得错踪复杂,甚至分不清哪个应用要在哪个应用之前启动,架构师都不能完整的描述应用的架构关系。
(3) 接着,服务的调用量越来越大,服务的容量问题就暴露出来,这个服务需要多少机器支撑?什么时候该加机器?
(4) 服务多了,沟通成本也开始上升,调某个服务失败该找谁?服务的参数都有什么约定?
(5) 一个服务有多个业务消费者,如何确保服务质量?
(6) 随着服务的不停升级,总有些意想不到的事发生,比如cache写错了导致内存溢出,故障不可避免,每次核心服务一挂,影响一大片,人心慌慌,如何控制故障的影响面?服务是否可以功能降级?或者资源劣化?
Java分布式应用技术基础
分布式服务下的关键技术:消息队列架构
消息对列通过消息对象分解系统耦合性,不同子系统处理同一个消息
分布式服务下的关键技术:消息队列原理
分布式服务下的关键技术:服务框架架构
服务框架通过接口分解系统耦合性,不同子系统通过相同的接口描述进行服务启用
服务框架是一个点对点模型
服务框架面向同构系统
适合:移动应用、互联网应用、外部系统
分布式服务下的关键技术:服务框架原理
分布式服务下的关键技术:服务总线架构
服务总线同服务框架一样,均是通过接口分解系统耦合性,不同子系统通过相同的接口描述进行服务启用
服务总线是一个总线式的模型
服务总线面向同构、异构系统
适合:内部系统
分布式服务下的关键技术:服务总线原理
分布式架构下系统间交互的5种通信模式
request/response模式(同步模式):客户端发起请求一直阻塞到服务端返回请求为止。
Callback(异步模式):客户端发送一个RPC请求给服务器,服务端处理后再发送一个消息给消息发送端提供的callback端点,此类情况非常合适以下场景:A组件发送RPC请求给B,B处理完成后,需要通知A组件做后续处理。
Future模式:客户端发送完请求后,继续做自己的事情,返回一个包含消息结果的Future对象。客户端需要使用返回结果时,使用Future对象的get(),如果此时没有结果返回的话,会一直阻塞到有结果返回为止。
Oneway模式:客户端调用完继续执行,不管接收端是否成功。
Reliable模式:为保证通信可靠,将借助于消息中心来实现消息的可靠送达,请求将做持久化存储,在接收方在线时做送达,并由消息中心保证异常重试。
五种通信模式的实现方式-同步点对点服务模式
五种通信模式的实现方式-异步点对点消息模式1
五种通信模式的实现方式-异步点对点消息模式2
五种通信模式的实现方式-异步广播消息模式
分布式架构下的服务治理
服务治理是服务框架/服务总线的核心功能。所谓服务治理,是指服务的提供方和消费方达成一致的约定,保证服务的高质量。服务治理功能可以解决将某些特定流量引入某一批机器,以及限制某些非法消费者的恶意访问,并在提供者处理量达到一定程度是,拒绝接受新的访问。
基于服务框架Dubbo的服务治理-服务管理
可以知道你的系统,对外提供了多少服务,可以对服务进行升级、降级、停用、权重调整等 *** 作
可以知道你提供的服务,谁在使用,因业务需求,可以对该消费者实施屏蔽、停用等 *** 作
基于服务框架Dubbo的服务治理-服务监控
可以统计服务的每秒请求数、平均响应时间、调用量、峰值时间等,作为服务集群规划、性能调优的参考指标。
基于服务框架Dubbo的服务治理-服务路由
基于服务框架Dubbo的服务治理-服务保护
基于服务总线OSB的服务治理-功能介绍
基于服务总线OSB的服务治理
Q:Dubbo到底是神马?
A:
淘宝开源的高性能和透明化的RPC远程调用服务框架
SOA服务治理方案
Q:Dubbo原理是?
A:
-结束-
对于大型网站而言,随着流量的暴增,单一服务器是无法抗住高并发的,所以大型网站都是从最初的单一架构演变为集群分布式架构。淘宝网作为数一数二的电商平台,它开发了很多底层技术框架以适应日益发展的需要。
什么是分布式与负载均衡?
1、分布式
分布式是将一个完整业务拆分为多个子业务(或者本身就是不同的业务)部署在不同服务器之上,比如用户系统、订单系统、商城系统分布部署在不同服务器上。
还有一个概念容易和分布式混淆,那就是集群。集群强调的是同一个业务部署在多台服务器之上。
集群模式下,多个节点中的某个节点挂了是不会影响整体业务的;而分布式环境下若某个节点挂了则可能会影响某个业务(实际上不会,因为业务分布式部署后也会做集群)。
2、负载均衡
负载均衡充当的角色就是“裁判”,它将大量并发流量分摊至多台节点服务器(集群)上进行处理,这样减少了用户等待响应时间。
所以说负载均衡离不开服务集群。
淘宝如何是如何实现分布式、集群和负载均衡的?
1、动静分离
将动态请求与静态请求分别部署在不同服务器上,以便针对性进行优化。
2、分布式服务框架HSF
HSF是阿里的分布式服务框架,经过拆分,各系统间的耦合度大大降低了,更有利于分布式部署。
3、分布式NoSQL框架Tair
Tair是淘宝开源的分布式K/V数据库。
4、高性能Web服务器Tengine
Tengine是基于Nginx二次开发的,性能上比Nginx更好,而且支持更多特性,如:请求合并、限速模块、内置Lua等。可以借助它来做反向代理和负载均衡。
以上就是我的观点,对于这个问题大家是怎么看待的呢?欢迎在下方评论区交流~我是科技领域创作者,十年互联网从业经验,欢迎关注我了解更多科技知识!如果大家了解微服务和分布式服务器架构等技术的话,那么对于如何解决系统运行中出现的BUG造成的破坏和损失这些问题也应该有自己独到的见解吧。今天,电脑培训就一起来了解一下,在服务器运行过程中出现的问题都有哪些解决方法。
随着微服务和分布式云架构的崛起,Web变得日趋复杂,“随机性”的故障因此变得越来越难以预测,而我们对这些系统的依赖却与日俱增。
这些故障给公司造成巨大损失,也给用户带来很大的麻烦,影响他们进行在线购物、交易或打断他们的工作。即使是一些简单的故障也会触及公司的底线,因此,宕机时间就成为很多工程团队的KPI。2017年,有98%的企业表示,一小时的宕机时间将给他们带来超过10万美元的损失。一次服务中断有可能让一个公司损失数百万美元。近,英国航空的CEO透露,2017年5月发生的一次技术故障造成数千名乘客滞留机场,给公司造成8000千万英镑的损失。
企业需要想办法解决这些问题,因为等到下一次事故发生就为时已晚。为此,混沌工程应运而生。
混沌工程旨在将故障扼杀在襁褓之中,也就是在故障造成中断之前将它们识别出来。通过主动制造故障,测试系统在各种压力下的行为,识别并修复故障问题,避免造成严重后果。
混沌工程将预想的事情与实际发生的事情进行对比,通过“有意识地搞破坏”来提升系统的d性。
混沌工程简史
混沌工程先出现在互联网巨头公司中,这些公司拥有大规模的分布式系统,因为这些系统太过复杂,他们需要一些新的手段来测试它们。
2010年
NetflixEngTools团队开发出了ChaosMonkey。当时,Netflix从物理基础设施迁移到AWS上,为了保证AWS实例的故障不会给Netflix的用户体验造成影响,他们开发了这个工具,用来测试系统。
2011年
SimianArmy诞生,在ChaosMonkey的基础上增加了故障注入模式,可以测试更多的故障场景。Netflix认为,云的特点是冗余和容错,但没有哪个组件能够保证100%的可用性,所以他们必须设计出一种云架构,在这种架构里,个体组件的故障不会影响到整个系统。
2012年
Netflix在GitHub上开源了ChaosMonkey,并声称他们“已经找到了应对主要非预期故障的解决方案。通过经常性地制造故障,我们的服务因此变得更有d性。”
2014年
Netflix团队创建了一种新的角色,叫作混沌工程师。BruceWong发明了这个角色,并由DanWoods在Twitter上向广大的工程社区推广。DanWoods解释说,“我从KoltonAndrus那里学到了更多有关混沌工程的知识,他把它叫作故障注入测试”。
2014年10月,当时Gremlin的联合创始人KoltonAndrus还在Netflix,他们在SimianArmy的基础上提出了故障注入测试(FIT)概念,开发者可以更灵活地控制注入故障的“杀伤力范围”。因为SimianArmy有时候会造成非常严重的故障,所以Netflix的开发者对它抱有疑虑,而FIT可以更好地控制故障粒度,于是他们就由此想出了混沌工程这个概念。
分布式存储架构由三个部分组成:客户端、元数据服务器和数据服务器。客户端负责发送读写请求,缓存文件元数据和文件数据。元数据服务器负责管理元数据和处理客户端的请求,是整个系统的核心组件。数据服务器负责存放文件数据,保证数据的可用性和完整性。该架构的好处是性能和容量能够同时拓展,系统规模具有很强的伸缩性。对象存储最常用的方案,就是多台服务器内置大容量硬盘,再装上对象存储软件,然后再额外搞几台服务作为管理节点,安装上对象存储管理软件。管理节点可以管理其他服务器对外提供读写访问功能。
之所以出现了对象存储这种东西,是为了克服块存储与文件存储各自的缺点,发扬它俩各自的优点。简单来说块存储读写快,不利于共享,文件存储读写慢,利于共享。能否弄一个读写快,利 于共享的出来呢。于是就有了对象存储。
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)