AMD CPU 的核心类型
1) Athlon XP 的核心类型 Athlon XP 有 4 种不同的核心类型,但都有共同之处:都采用 Socket A 接口,而且都采用 PR 标称值标注。
2) Palomino 这是最早的 Athlon XP 的核心,采用 018um 制造工艺,核心电压为 175V 左右,二级缓存为 256KB,封装方式采用 OPGA,前端总线频率为 266MHz。
3) Thoroughbred 这是第一种采用 013um 制造工艺的 Athlon XP 核心,又分为 Thoroughbred-A 和 Thoroughbred-B 两种版本,核心电压 165V-175V 左右,二级缓存为 256KB,封装方式采用 OPGA,前端总线频率为 266MHz 和 333MHz。
4) Thorton 采用 013um 制造工艺,核心电压 165V 左右,二级缓存为 256KB,封装方式采用 OPGA,前端总线频率为 333MHz。可以看作是屏蔽了一半二级缓存的 Barton。
5) Barton 采用 013um 制造工艺,核心电压 165V 左右,二级缓存为 512KB,封装方式采用 OPGA,前端总线频率为 333MHz 和 400MHz。
(三)新 Duron 的核心类型
AppleBred 采用 013um 制造工艺,核心电压 15V 左右,二级缓存为 64KB,封装方式采用 OPGA,前端总线频率为 266MHz。没有采用 PR 标称值标注,而以实际频率标注,有 14GHz、16GHz 和 18GHz 三种。
(四)Athlon 64 系列 CPU 的核心类型
1) Sledgehammer Sledgehammer 是 AMD 服务器 CPU 的核心,是 64 位的 CPU,一般为 940 接口,采用 013 微米工艺。Sledgehammer 的功能强大,集成三条 HyperTransprot 总线,核心使用 12 级流水线,128K 一级缓存、集成 1M 二级缓存,可以用于单路到 8 路 CPU 服务器。Sledgehammer 集成内存控制器,比起传统上位于北桥的内存控制器有更小的延时,支持双通道 DDR 内存,由于是服务器 CPU,当然支持 ECC 校验。
2) Clawhammer 采用 013um 制造工艺,核心电压 15V 左右,二级缓存为 1MB,封装方式采用 mPGA,采用 Hyper Transport 总线,内置一个 128bit 的内存控制器。采用 Socket 754、Socket 940 和 Socket 939 接口。
3) Newcastle 其与 Clawhammer 的最主要区别,就是二级缓存降为 512KB(这也是 AMD 为了市场需要和加快推广 64 位 CPU 而采取的相对低价政策的结果),其它性能基本相同。
4) Wincheste Wincheste 是比较新的 AMD Athlon 64 CPU 核心,是 64 位的 CPU,一般为 939 接口,009 微米制造工艺。这种核心使用 200MHz 外频,支持 1GHyperTransprot 总线,512K 二级缓存,性价比较好。Wincheste 集成双通道内存控制器,支持双通道 DDR 内存,由于使用新的工艺,Wincheste 的发热量比旧的 Athlon 小,性能也有所提升。
5) Troy Troy 是 AMD 第一个使用 90nm 制造工艺的 Opteron 核心。Troy 核心是在 Sledgehammer 基础上增添了多项新技术而来的,通常为 940 针脚,拥有 128K 一级缓存和 1MB (1024 KB)二级缓存。同样使用 200MHz 外频,支持 1GHyperTransprot 总线,集成了内存控制器,支持双通道 DDR 400 内存,并且可以支持 ECC 内存。此外,Troy 核心还提供了对 SSE-3 的支持,和 Intel 的 Xeon 相同。总的来说,Troy 是一款不错的 CPU 核心。
6) Venice Venice 核心是在 Wincheste 核心的基础上演变而来,其技术参数和 Wincheste 基本相同:一样基于 X86-64 架构、整合双通道内存控制器、512KB L2 缓存、90nm 制造工艺、200MHz 外频,支持 1GHyperTransprot 总线。Venice 的变化主要有三方面:一是使用了 Dual Stress Liner(简称 DSL)技术,可以将半导体晶体管的响应速度提高 24%,这样 CPU 有更大的频率空间,更容易超频;二是提供了对 SSE-3 的支持,和 Intel 的 CPU 相同;三是进一步改良了内存控制器,一定程度上增加处理器的性能,更主要的是增加内存控制器对不同 DIMM 模块和不同配置的兼容性。此外 Venice 核心还使用了动态电压,不同的 CPU 可能会有不同的电压。
7) SanDiego
SanDiego 核心与 Venice 一样,是在 Wincheste 核心的基础上演变而来,其技术参数和 Venice 非常接近,Venice 拥有的新技术、新功能,SanDiego 核心一样拥有。不过 AMD 公司将 SanDiego 核心定位到顶级 Athlon 64 处理器之上,甚至用于服务器 CPU。可以将 SanDiego 看作是 Venice 核心的高级版本,只不过缓存容量由 512KB 提升到了 1MB。当然,由于 L2 缓存增加,SanDiego 核心的内核尺寸也有所增加,从 Venice 核心的 84 平方毫米增加到 115 平方毫米,当然价格也更高昂。
(五)闪龙系列 CPU 的核心类型
1) Paris
Paris 核心是 Barton 核心的继任者,主要用于 AMD 的闪龙,早期的 754 接口闪龙部分使用 Paris 核心。Paris 采用 90nm 制造工艺,支持 iSSE2 指令集,一般为 256K 二级缓存,200MHz 外频。Paris 核心是 32 位 CPU,来源于 K8 核心,因此也具备了内存控制单元。CPU 内建内存控制器的主要优点,在于内存控制器可以以 CPU 频率运行,比起传统上位于北桥的内存控制器有更小的延时。使用 Paris 核心的闪龙与 Socket A 接口闪龙 CPU 相比,性能得到明显提升。
2) Palermo
Palermo 核心目前主要用于 AMD 的闪龙 CPU,使用 Socket 754 接口、90nm 制造工艺,14V 左右电压,200MHz 外频,128K 或者 256K 二级缓存。Palermo 核心源于 K8 的 Wincheste 核心,不过是 32 位的。除了拥有与 AMD 高端处理器相同的内部架构,还具备了 EVP、Cool'n'Quiet;和 HyperTransport 等 AMD 独有的技术,为广大用户带来更“冷静”、更高计算能力的优秀处理器。由于脱胎与 ATHLON 64 处理器,所以,Palermo 同样具备了内存控制单元。CPU 内建内存控制器的主要优点,在于内存控制器可以以 CPU 频率运行,比起传统上位于北桥的内存控制器有更小的延时。
(六)双核心类型
在2005年以前,主频一直是两大处理器巨头 Intel 和 AMD 争相追逐的焦点。而且处理器主频也在 Intel 和 AMD 的推动下,达到了一个又一个的高峰。就在处理器主频提升速度的同时,也发现在目前的情况下,单纯主频的提升,已经无法为系统整体性能的提升带来明显的好处,并且高主频带来了处理器巨大的发热量。更为不利是,Intel 和 AMD 两家在处理器主频提升上已经有些力不从心了。在这种情况下,Intel 和 AMD 都不约而同地将目光投向了多核心的发展方向。在不用进行大规模开发的情况下,将现有产品发展成为理论性能更为强大的多核心处理器系统,无疑是相当明智的选择。
双核处理器就是基于单个半导体的一个处理器上拥有两个一样功能的处理器核心,即是将两个物理处理器核心整合入一个内核中。事实上,双核架构并不是什么新技术,不过此前双核心处理器一直是服务器的专利,现在已经开始普及之中。
1) Intel 的双核心处理器介绍
目前 Intel 推出的双核心处理器,有 Pentium D 和 Pentium Extreme Edition,同时推出 945/955 芯片组来支持新推出的双核心处理器,采用 90nm 工艺生产的这两款新推出的双核心处理器,使用是没有针脚的 LGA 775 接口,但处理器底部的贴片电容数目有所增加,排列方式也有所不同。
桌面平台的核心代号 Smithfield 的处理器,正式命名为 Pentium D 处理器。除了摆脱阿拉伯数字改用英文字母来表示这次双核心处理器的世代交替外,D 的字母也更容易让人联想起 Dual-Core 双核心的涵义。
Intel 的双核心构架,更像是一个双 CPU 平台,Pentium D 处理器继续沿用 Prescott 架构及 90nm 生产技术生产。Pentium D 内核实际上由于两个独立的 Prescott 核心组成,每个核心拥有独立的 1MB L2 缓存及执行单元,两个核心加起来一共拥有 2MB。但由于处理器中的两个核心都拥有独立的缓存,因此必须保证每个二级缓存当中的信息完全一致,否则就会出现运算错误。
为了解决这一问题,Intel 将两个核心之间的协调工作交给了外部的 MCH(北桥)芯片。虽然缓存之间的数据传输与存储并不巨大,但由于需要通过外部的 MCH 芯片进行协调处理,毫无疑问的会对整个的处理速度带来一定的延迟,从而影响到处理器整体性能的发挥。
由于采用 Prescott 内核,因此 Pentium D 也支持 EM64T 技术、XD bit 安全技术。值得一提的是,Pentium D 处理器将不支持 Hyper-Threading 技术。原因很明显:在多个物理处理器及多个逻辑处理器之间正确分配数据流、平衡运算任务并非易事。比如,如果应用程序需要两个运算线程,很明显每个线程对应一个物理内核,但如果有 3 个运算线程呢?因此为了减少双核心 Pentium D 架构复杂性,英特尔决定在针对主流市场的 Pentium D 中取消对 Hyper-Threading 技术的支持。
同出自 Intel 之手,而且 Pentium D 和 Pentium Extreme Edition 两款双核心处理器名字上的差别也预示着这两款处理器在规格上也不尽相同。其中,它们之间最大的不同,就是对于超线程(Hyper-Threading)技术的支持。Pentium D 不能支持超线程技术,而 Pentium Extreme Edition 则没有这方面的限制。在打开超线程技术的情况下,双核心 Pentium Extreme Edition 处理器能够模拟出另外两个逻辑处理器,可以被系统认成四核心系统。
2) AMD 的双核心处理器介绍
AMD 推出的双核心处理器,分别是双核心的 Opteron 系列和全新的 Athlon 64 X2 系列处理器。其中,Athlon 64 X2 是用以抗衡 Pentium D 和 Pentium Extreme Edition 的桌面双核心处理器系列。
AMD 推出的 Athlon 64 X2 是由两个 Athlon 64 处理器上采用的 Venice 核心组合而成,每个核心拥有独立的 512KB(1MB) L2 缓存及执行单元。除了多出一个核芯之外,从架构上相对于目前 Athlon 64 在架构上并没有任何重大的改变。
双核心 Athlon 64 X2 的大部分规格、功能与我们熟悉的 Athlon 64 架构没有任何区别,也就是说,新推出的 Athlon 64 X2 双核心处理器,仍然支持 1GHz 规格的 HyperTransport 总线,并且内建了支持双通道设置的 DDR 内存控制器。
与 Intel 双核心处理器不同的是,Athlon 64 X2 的两个内核并不需要经过 MCH 进行相互之间的协调。 AMD 在 Athlon 64 X2 双核心处理器的内部提供了一个称为 System Request Queue(系统请求队列)的技术,在工作的时候,每一个核心都将其请求放在 SRQ 中,当获得资源之后,请求将会被送往相应的执行核心。也就是说,所有的处理过程都在 CPU 核心范围之内完成,并不需要借助外部设备。
对于双核心架构,AMD 的做法是将两个核心整合在同一片硅晶内核之中,而 Intel 的双核心处理方式则更像是简单的将两个核心做到一起而已。与 Intel 的双核心架构相比,AMD 双核心处理器系统不会在两个核心之间存在传输瓶颈的问题。因此,从这个方面来说,Athlon 64 X2 的架构要明显优于 Pentium D 架构。
虽然与 Intel 相比,AMD 并不用担心 Prescott 核心这样的功耗和发热大户,但是同样需要为双核心处理器考虑降低功耗的方式。为此 AMD 并没有采用降低主频的办法,而是在其使用 90nm 工艺生产的 Athlon 64 X2 处理器中,采用了所谓的 Dual Stress Liner 应变硅技术,与 SOI 技术配合使用,能够生产出性能更高、耗电更低的晶体管。
AMD 推出的 Athlon 64 X2 处理器给用户带来最实惠的好处就是,不需要更换平台,就能使用新推出的双核心处理器,只要对老主板升级一下 BIOS 就可以了。这与 Intel 双核心处理器必须更换新平台才能支持的做法相比,升级双核心系统会节省不少费用
ECC内存条可以用来玩游戏的,但玩游戏首先看显卡,其次是CPU、内存。
对内存而言,主要还是看内存的容量。服务器用带ECC功能的内存在性能上比普通台式机内存要好,但重点还是内存容量要大。
现在大型游戏对内存容量要求不断上升,如果服务器安装的内存总容量小于4GB将可能导致一些大型3D游戏无法运行!
同时,注意一般普通台式电脑不能使用这种服务器内存。
扩展资料:
区分ECC与non-ECC内存条最简单的方法是数内存上的颗粒数,一般情况下做ECC校验的话需要在内存条的每一个单面上增加一颗IC。
你数一下DIMM的黑色IC芯片数就能区分了,芯片数能被三整除的就是ECC内存,如果不能被三整除就是非ECC内存。
参考资料来源:百度百科--ECC内存
磐正agf61属于nvidia nf6100芯片组,支持ddr2内存,属于老的不能再老的主板了,没必要升级了。ecc内存条属于服务器专用内存,一般家用主板不支持,不过agf61是amd主板可以使用amd专用内存条。分类: 电脑/网络 >> 硬件解析:
AMD CPU的核心类型
Athlon XP的核心类型
Athlon XP有4种不同的核心类型,但都有共同之处:都采用Socket A接口而且都采用PR标称值标注。
Thorton
采用013um制造工艺,核心电压165V左右,二级缓存为256KB,封装方式采用OPGA,前端总线频率为333MHz。可以看作是屏蔽了一半二级缓存的Barton。
Barton
采用013um制造工艺,核心电压165V左右,二级缓存为512KB,封装方式采用OPGA,前端总线频率为333MHz和400MHz。
新Duron的核心类型
AppleBred
采用013um制造工艺,核心电压15V左右,二级缓存为64KB,封装方式采用OPGA,前端总线频率为266MHz。没有采用PR标称值标注而以实际频率标注,有14GHz、16GHz和18GHz三种。
Athlon 64系列CPU的核心类型
Clawhammer
采用013um制造工艺,核心电压15V左右,二级缓存为1MB,封装方式采用mPGA,采用Hyper Transport总线,内置1个128bit的内存控制器。采用Socket 754、Socket 940和Socket 939接口。
Newcastle
其与Clawhammer的最主要区别就是二级缓存降为512KB(这也是AMD为了市场需要和加快推广64位CPU而采取的相对低价政策的结果),其它性能基本相同。
Wincheste
Wincheste是比较新的AMD Athlon 64CPU核心,是64位CPU,一般为939接口,009微米制造工艺。这种核心使用200MHz外频,支持1GHyperTransprot总线,512K二级缓存,性价比较好。Wincheste集成双通道内存控制器,支持双通道DDR内存,由于使用新的工艺,Wincheste的发热量比旧的Athlon小,性能也有所提升。
Troy
Troy是AMD第一个使用90nm制造工艺的Opteron核心。Troy核心是在Sledgehammer基础上增添了多项新技术而来的,通常为940针脚,拥有128K一级缓存和1MB (1,024 KB)二级缓存。同样使用200MHz外频,支持1GHyperTransprot总线,集成了内存控制器,支持双通道DDR400内存,并且可以支持ECC 内存。此外,Troy核心还提供了对SSE-3的支持,和Intel的Xeon相同,总的来说,Troy是一款不错的CPU核心。
Venice
Venice核心是在Wincheste核心的基础上演变而来,其技术参数和Wincheste基本相同:一样基于X86-64架构、整合双通道内存控制器、512KB L2缓存、90nm制造工艺、200MHz外频,支持1GHyperTransprot总线。Venice的变化主要有三方面:一是使用了Dual Stress Liner (简称DSL)技术,可以将半导体晶体管的响应速度提高24%,这样是CPU有更大的频率空间,更容易超频;二是提供了对SSE-3的支持,和Intel的CPU相同;三是进一步改良了内存控制器,一定程度上增加处理器的性能,更主要的是增加内存控制器对不同DIMM模块和不同配置的兼容性。此外Venice核心还使用了动态电压,不同的CPU可能会有不同的电压。
SanDiego
SanDiego核心与Venice一样是在Wincheste核心的基础上演变而来,其技术参数和Venice非常接近,Venice拥有的新技术、新功能,SanDiego核心一样拥有。不过AMD公司将SanDiego核心定位到顶级Athlon 64处理器之上,甚至用于服务器CPU。可以将SanDiego看作是Venice核心的高级版本,只不过缓存容量由512KB提升到了1MB。当然由于L2缓存增加,SanDiego核心的内核尺寸也有所增加,从Venice核心的84平方毫米增加到115平方毫米,当然价格也更高昂。
Orleans
这是2006年5月底发布的第一种Socket AM2接口单核心Athlon 64的核心类型,其名称来源于法国城市奥尔良(Orleans)。Manila核心定位于桌面中端处理器,采用90nm制造工艺,支持虚拟化技术AMD VT,仍然采用1000MHz的HyperTransport总线,二级缓存为512KB,最大亮点是支持双通道DDR2 667内存,这是其与只支持单通道DDR 400内存的Socket 754接口Athlon 64和只支持双通道DDR 400内存的Socket 939接口Athlon 64的最大区别。Orleans核心Athlon 64同样也分为TDP功耗62W的标准版(核心电压135V左右)和TDP功耗35W的超低功耗版(核心电压125V左右)。除了支持双通道DDR2内存以及支持虚拟化技术之外,Orleans核心Athlon 64相对于以前的Socket 754接口和Socket 940接口的Athlon 64并无架构上的改变,性能并无多少出彩之处。
闪龙系列CPU的核心类型
Paris
Paris核心是Barton核心的继任者,主要用于AMD的闪龙,早期的754接口闪龙部分使用Paris核心。Paris采用90nm制造工艺,支持iSSE2指令集,一般为256K二级缓存,200MHz外频。Paris核心是32位CPU,来源于K8核心,因此也具备了内存控制单元。CPU内建内存控制器的主要优点在于内存控制器可以以CPU频率运行,比起传统上位于北桥的内存控制器有更小的延时。使用Paris核心的闪龙与Socket A接口闪龙CPU相比,性能得到明显提升。
Palermo
Palermo核心目前主要用于AMD的闪龙CPU,使用Socket 754接口、90nm制造工艺,14V左右电压,200MHz外频,128K或者256K二级缓存。Palermo核心源于K8的Wincheste核心,新的E6步进版本已经支持64位。除了拥有与AMD高端处理器相同的内部架构,还具备了EVP、Cool‘n’Quiet;和HyperTransport等AMD独有的技术,为广大用户带来更“冷静”、更高计算能力的优秀处理器。由于脱胎与ATHLON64处理器,所以Palermo同样具备了内存控制单元。CPU内建内存控制器的主要优点在于内存控制器可以以CPU频率运行,比起传统上位于北桥的内存控制器有更小的延时。
Manila
这是2006年5月底发布的第一种Socket AM2接口Sempron的核心类型,其名称来源于菲律宾首都马尼拉(Manila)。Manila核心定位于桌面低端处理器,采用90nm制造工艺,不支持虚拟化技术AMD VT,仍然采用800MHz的HyperTransport总线,二级缓存为256KB或128KB,最大亮点是支持双通道DDR2 667内存,这是其与只支持单通道DDR 400内存的Socket 754接口Sempron的最大区别。Manila核心Sempron分为TDP功耗62W的标准版(核心电压135V左右)和TDP功耗35W的超低功耗版(核心电压125V左右)。除了支持双通道DDR2之外,Manila核心Sempron相对于以前的Socket 754接口Sempron并无架构上的改变,性能并无多少出彩之处。
Athlon 64 X2系列双核心CPU的核心类型
Manchester
这是AMD于2005年4月发布的在桌面平台上的第一款双核心处理器的核心类型,是在Venice核心的基础上演变而来,基本上可以看作是两个Venice核心耦合在一起,只不过协作程度比较紧密罢了,这是基于独立缓存的紧密型耦合方案,其优点是技术简单,缺点是性能仍然不够理想。Manchester核心采用90nm制造工艺,整合双通道内存控制器,支持1000MHz的HyperTransprot总线,全部采用Socket 939接口。Manchester核心的两个内核都独立拥有512KB的二级缓存,但与Intel的Smithfield核心和Presler核心的缓存数据同步要依靠主板北桥芯片上的仲裁单元通过前端总线传输方式大为不同的是,Manchester核心中两个内核的协作程度相当紧密,其缓存数据同步是依靠CPU内置的SRI(System Request Interface,系统请求接口)控制,传输在CPU内部即可实现。这样一来,不但CPU资源占用很小,而且不必占用内存总线资源,数据延迟也比Intel的Smithfield核心和Presler核心大为减少,协作效率明显胜过这两种核心。不过,由于Manchester核心仍然是两个内核的缓存相互独立,从架构上来看也明显不如以Yonah核心为代表的Intel的共享缓存技术Smart Cache。当然,共享缓存技术需要重新设计整个CPU架构,其难度要比把两个核心简单地耦合在一起要困难得多。
Toledo
这是AMD于2005年4月在桌面平台上的新款高端双核心处理器的核心类型,它和Manchester核心非常相似,差别在于二级缓存不同。Toledo是在San Diego核心的基础上演变而来,基本上可以看作是两个San diego核心简单地耦合在一起,只不过协作程度比较紧密罢了,这是基于独立缓存的紧密型耦合方案,其优点是技术简单,缺点是性能仍然不够理想。Toledo核心采用90nm制造工艺,整合双通道内存控制器,支持1000MHz的HyperTransprot总线,全部采用Socket 939接口。Toledo核心的两个内核都独立拥有1MB的二级缓存,与Manchester核心相同的是,其缓存数据同步也是通过SRI在CPU内部传输的。Toledo核心与Manchester核心相比,除了每个内核的二级缓存增加到1MB之外,其它都完全相同,可以看作是Manchester核心的高级版。
Windsor
这是2006年5月底发布的第一种Socket AM2接口双核心Athlon 64 X2和Athlon 64 FX的核心类型,其名称来源于英国地名温莎(Windsor)。Windsor核心定位于桌面高端处理器,采用90nm制造工艺,支持虚拟化技术AMD VT,仍然采用1000MHz的HyperTransport总线,二级缓存方面Windsor核心的两个内核仍然采用独立式二级缓存,Athlon 64 X2每核心为512KB或1024KB,Athlon 64 FX每核心为1024KB。Windsor核心的最大亮点是支持双通道DDR2 800内存,这是其与只支持双通道DDR 400内存的Socket 939接口Athlon 64 X2和Athlon 64 FX的最大区别。Windsor核心Athlon 64 FX目前只有FX-62这一款产品,其TDP功耗高达125W;而Athlon 64 X2则分为TDP功耗89W的标准版(核心电压135V左右)、TDP功耗65W的低功耗版(核心电压125V左右)和TDP功耗35W的超低功耗版(核心电压105V左右)。Windsor核心的缓存数据同步仍然是依靠CPU内置的SRI(System request interface,系统请求接口)传输在CPU内部实现,除了支持双通道DDR2内存以及支持虚拟化技术之外,相对于以前的Socket 939接口Athlon 64 X2和双核心Athlon 64 FX并无架构上的改变,性能并无多少出彩之处,其性能仍然不敌Intel即将于2006年7月底发布的Conroe核心Core 2 Duo和Core 2 Extreme。而且AMD从降低成本以提高竞争力方面考虑,除了Athlon 64 FX之外,已经决定停产具有1024KBx2二级缓存的所有Athlon 64 X2,只保留具有512KBx2二级缓存的Athlon 64 X2。
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)