gpu服务器有哪些应用场景?

gpu服务器有哪些应用场景?,第1张

GPU服务器的主要应用场景有海量计算处理,超强的计算功能可应用与海量数据处理方面的运算,如搜索、大数据推荐、智能输入法等,可能原本需要几天才能完成的数据量,用GPU服务器在几个小时就完成了;GPU服务器还可以作为深度学习训练平台,可直接加速计算服务,亦可直接与外界连接通信等等。思腾合力在GPU服务器的型号方面还是有很多选择的,有自主研发的品牌也有英伟达的,在选择方面还是比较多的,应用的场景也十分广泛。

深度学习是需要配置专门的GPU服务器的:

深度学习的电脑配置要求:

1、数据存储要求

在一些深度学习案例中,数据存储会成为明显的瓶颈。做深度学习首先需要一个好的存储系统,将历史资料保存起来。

主要任务:历史数据存储,如:文字、图像、声音、视频、数据库等。

数据容量:提供足够高的存储能力。

读写带宽:多硬盘并行读写架构提高数据读写带宽。

接口:高带宽,同时延迟低。

传统解决方式:专门的存储服务器,借助万兆端口访问。

缺点:带宽不高,对深度学习的数据读取过程时间长(延迟大,两台机器之间数据交换),成本还巨高。

2、CPU要求

当你在GPU上跑深度网络时,CPU进行的计算很少,但是CPU仍然需要处理以下事情:

(1)数据从存储系统调入到内存的解压计算。

(2)GPU计算前的数据预处理。

(3)在代码中写入并读取变量,执行指令如函数调用,创建小批量数据,启动到GPU的数据传输。

(4)GPU多卡并行计算前,每个核负责一块卡的所需要的数据并行切分处理和控制。

(5)增值几个变量、评估几个布尔表达式、在GPU或在编程里面调用几个函数——所有这些会取决于CPU核的频率,此时唯有提升CPU频率。

传统解决方式:CPU规格很随意,核数和频率没有任何要求。

3、GPU要求

如果你正在构建或升级你的深度学习系统,你最关心的应该也是GPU。GPU正是深度学习应用的核心要素——计算性能提升上,收获巨大。

主要任务:承担深度学习的数据建模计算、运行复杂算法。

传统架构:提供1~8块GPU。

4、内存要求

至少要和你的GPU显存存大小相同的内存。当然你也能用更小的内存工作,但是,你或许需要一步步转移数据。总而言之,如果钱够而且需要做很多预处理,就不必在内存瓶颈上兜转,浪费时间。

主要任务:存放预处理的数据,待GPU读取处理,中间结果存放。

深度学习需要强大的电脑算力,因此对电脑的硬件配置自然是超高的,那么现在普通的高算力电脑需要高配置硬件。

你想要什么品牌的服务器呢,不同的品牌价格差异还是比较大的,不过我觉得还是应该找综合实力强的,售后服务还是要跟上的。我们公司现在用的思腾合力的服务器,性价比还是比较高,不仅拥有自主品牌GPU服务器及通用X86服务器,而且还是NVIDIADGX系列产品官方授权经销商,型号还是比较多的。

首先GPU服务器是需要自己搭建的,过程繁杂 *** 作起来难度大,需要一个专业的IT支持的,相比GPU服务器来说,选择赞奇云工作站免去繁杂的搭建步骤,而且与本地电脑 *** 作无异,免去学习烦恼,而且省去it成本。

赞奇云工作站拥有专业级显卡、超大内存等多种机器配置。机器显卡更新及时,提供高配机型,海量资源可按需选择,内置软件中心提供最新软件安装包,一键下载,省去搜索时间,提高工作效率。

赞奇云工作站提供海量机器,一键申请,提供包年包月多种套餐,灵活选择,按需使用,满足各类工种所需要的机器要求,同时降低运维成本。

代替。没有GPU的服务器,照样可以进行计算和使用,所以服务器代替gpu。GPU即图形处理器,又称显示核心、视觉处理器、显示芯片,是一种专门在个人电脑、工作站、游戏机和一些移动设备上图像运算工作的微处理器。

选择带GPU的镜像后
更新源,安装必要依赖

配置中文环境

sudo vim /etc/environment
添加下面两行

接着

安装pytorch

安装vision

配置zsh

个人配置


欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/zz/13429237.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-08-04
下一篇 2023-08-04

发表评论

登录后才能评论

评论列表(0条)

保存