HP发展历史

HP发展历史,第1张

2010-2011▪ 李艾科
目录公司简介发展历史企业文化管理方式领导团队管理层调整惠普实验室
展开公司简介发展历史企业文化管理方式领导团队管理层调整惠普实验室
展开
编辑本段公司简介
HP共同创始人戴维·帕卡德和威廉·休利特
HP来源于惠普两位创始人的姓氏,通过抛硬币决定的公司名称。1939年,在美国加州帕罗奥多市(Palo Alto)爱迪生大街367号的一间狭窄车库里,两位年轻的发明家比尔·休利特(Bill Hewlett)和戴维·帕卡德(David Packard),以手边仅有的538美元,怀着对未来技术发展的美好憧憬和发明创造的激情创建了HP公司,开始了硅谷的创新之路。惠普创业的车库,如今已经被美国政府命名为硅谷的诞生地。
惠普研发有限合伙公司(Hewlett-Packard Development Company,LP)(简称HP)(NYSE:HPQ) 位于美国加州的帕罗奥多,是一家全球性的资讯科技公司,主要专注于打印机、数码影像、软件、计算机与资讯服务等业务。2002年收购了美国著名的电脑公司康柏电脑(2001年9月4日宣布收购, 2002年5月3日完成收购)。
为了更好地为客户服务,不断开拓新的市场,HP每年在研发方面的投入达40亿美元,用于开发产品、解决方案和新技术。HP发明、设计和提供推动商业价值、创造社会价值、以及改善客户生活的技术解决方案,并在UNIX 服务器、Linux 服务器、Windows服务器、磁盘存储系统、存储局域网系统(SAN)、外部RAID存储系统、工作站、台式机、笔记本电脑、手持设备、喷墨打印机、激光打印机等多个市场领域暂时占据领先地位。目前惠普正重点关注云计算、设备的可连通性以及软件服务领域的发展。
中国惠普有限公司总部位于北京,在上海、广州、沈阳、南京、西安、武汉、成都、深圳等都设有分公司。其中在中国大连设有惠普全球呼叫中心,中国惠普在重庆设有生产工厂。编辑本段发展历史创建 
HP由Bill Hewlett和Dave Packard于1939年创建。该公司建在Palo
Alto的一间汽车库里,第一个产品是声频振荡器,它是音响工程师使用的电子测试仪器。HP公司的第一个客户是Walt Disney
Studios,该公司购买了HP的8台音频振荡器为经典“Fantasia”开发和测试创新的音响系统。
惠普的诞生地-车库
1934年,刚从斯坦福大学电气工程系毕业的戴维·帕卡(Dave Packard)和比尔·休利特(Bill Hewlett)去科罗拉多山脉进行了一次为期两周的垂钓野外露营。由于彼此对很多事情的看法一致,而结成一对挚友。此后,比尔在斯坦福大学和麻省理工学院继续研究生学业,而戴维则在通用电气公司找到一份工作。受斯坦福大学教授及导师Fred Terman的鼓励和支持,二人决定开办公司并“自己经营”。
1938年戴维夫妇迁居至加利福尼亚州帕拉阿托(Palo
Alto)市艾迪森(Addision)大街376号。比尔·休利特就在这栋房子后面租下一间小屋。比尔和戴维用538美元作为流动资金,并利用业余时间
在车库里开展工作。比尔利用其研究课题负反馈研制成功了惠普第一台产品:阻容式声频振荡器(HP200A),这是一种用于测试音响设备的电子仪器。该振荡
器采用炽灯作为电气接线图中的一个电气元件来提供可变阻抗,这在振荡器的设计上是一个突破利用反馈的原理,又相继生产出另外几项惠普早期的产品,诸如谐波
分析仪及多种失真分析仪。华特迪斯尼公司订购8台振荡器(HP 200B)用于制作“幻想曲”。
1939年1月1日成立合伙公司;二人通过抛硬币来决定公司名称。发展40-50年代
出道不久,合伙企业的产品即在工程界和科学界中大受欢迎。比尔和戴维与销售代理签约,以将其畅销产品向整个美国市场上投放。第二次世界大战爆发,美国政府对电子仪器的订单似雪片般越舞越多。惠普新产品不断增加,并且建造了第一座公司大楼。
1940年 公司从车库迁址至Palo Alto市位于Page Mill路和EI Camino Real的一座租赁大楼内。公司向员工发放第一笔奖金——笔5美元的圣诞奖金。其后,它成为一种生产奖金,再后来,它又变成公司内部的利润分配计划。营业纯收入:$34,000;员工人数:3人,产品种类:8种。
1942年 建造惠普第一座自己的大楼 (称为Redwood大厦),它集办公、实验室及工厂于一体积10,000平方英尺,位于Palo Alto市Page Mill路395号。选择这里是考虑到如果电子业不景气,就将大楼改建成食品杂货店。
1943年 惠普因向海军研究实验室开发出信号发生仪及雷达干扰仪,从而进入微波技术领域。第二次世界大战中,惠普因其成套系列的微波测试产品而被公认为信号发生器行业的领先者。
1947年8月18日,惠普注册为股份制公司。
在50年代,惠普进入了其增长和成熟期阶段,公司掌握了很多电子“新兴”技术并了解到其成长的
内部动因。公司“如何”成长和公司增长“多少”同样让人争论不休。就在这时,惠普制定了公司发展目标,这一目标后来成为其独特管理哲学的基础。惠普自此走
向一条全球化经营管理的道路。
1951年惠普发明高速频率计数器(HP 524A),它可大大减少测量高频所需的时间(从原先的10分钟左右降至1到2秒)。应用情况:广播电台使用HP 524A可精确设定频率(例如1047FM)。从而符合FCC有关频率稳定性的规定要求。营业纯收入:$550万,员工人数:215人。
1957年11月6日,公司股票首次上市。惠普制定出公司目标。这一目标为日后称为惠普方针的管理哲学奠定了理论基础。惠普在 Palo Alto市的斯坦福工业研究园建立起公司第一座大楼。
1958年 惠普首次收购公司成功:F L Moseley公司(加利福尼亚,Pasadena),这是一家高质图形记录仪的生产厂商。这次收购标志着惠普已进入绘图仪行业。营业纯收入:$3000万,员工人数:1778人;产品种类:373种。
1959年 远离加州大本营,在瑞士日内瓦设立营销机构,并在西德
惠普台式电脑(7张)
的Boeblingen建立第一家国外产品制造厂。
60年代
惠普在测试、测量产品市场中持续稳定增长,并开始涉足于其他相关领域,如电子医疗仪器和分析仪器。惠普已被视为一家进步迅速、管理有方和令人称羡的公司。
1960年 在科罗拉多州 Loveland建立除Palo Alto市以外的第一家美国加工厂。
1961年 收购Sanborn公司(马萨诸塞,Waltham),从而进入医学领域。惠普股票HWP正式在纽约证券市场和太平洋证券市场挂牌交易。
1962年 惠普首次荣登幸福杂志美国500家大型公司排名榜,列第460位。此后,惠普的幸福杂志排名榜名次逐年上升。
1963年 在日本东京成立第一家合资企业:Yokogawa惠普公司(合资方:Yokogawa电子公司)。
1964年 庆祝公司成立35周年。戴维·帕卡德当选为董事长,比尔 ·休利特出任总裁。原子铯时间标准仪 HP 5060A被世界广泛赞誉为“飞行钟”。全球各个地区均使用 HP 5060A与国际标准时间对时。
1965年 惠普收购 F&M科技公司(宾西法尼亚,Avondale),从而跻身于分析仪器领域。营业纯收入:$165亿;员工人数:9000人。
1966年 公司的中心研究机构惠普实验室成立。它是世界领先的电子研究中心之一。惠普设计出第一台计算机产品(HP 2116A),它用作测试及测量仪上的控制器。现在,惠普可提供全系列的计算机产品。
1967年 惠普设在德国Boeblingen的公司推出非接触式胎心监测仪,用于测定胎儿在分娩时的状况。该公司还首次提出d性工作制的概念,这一作法已在惠普全球各个机构中普遍采用。
1968年 世界第一台台式科学计算器HP 9100A问世。它是惠普今天高性能工作站产品线的前身。
1969年 戴维·帕卡德出任美国国防部副部长(任期1969年-1971年)。惠普首次向市场投放分时 *** 作系统,装在该系统的微电脑可同时供16个用户使用。
70年代
惠普坚持其锐意创新的传统,并推出第一台袖珍式科学计算器。至70年代末,公司的盈利状况及员工队伍均取得了大幅增长。比尔·休莱特和戴维·帕卡德将公司的日常经营委托给约翰·扬(John Young)管理。
1970年 营业纯收入:$365亿;员工人数:16000人。
1971年 利用激光技术生产出可测量百万分之一英寸长度的激光干扰仪。惠普激光干扰仪仍是目前微处理芯片制造中首选的仪器。
1972年 惠普推出具有划时代意义的第一台个人计算工具:HP-35掌上科学计算器,并将工程计算尺淘汰。以 HP 3000微电脑进军计算机领域。
1973年 惠普小型通用计算机系统成为计算机界第一套数据分布式处理系统。
1974年 生产出第一台基于4K动态随机存取器(DRAMs)的微电脑,从而取代了磁芯。
1975年 惠普通过制定标准接口,从而简化了仪器系统。电子业采用惠普接口总线 HP-IB作为国际接口标准,从而使多台仪器能够方便地与电脑连接。
惠普笔记本电脑(8张)
1977年 约翰·扬出任惠普公司总裁(1978年任首席执行官)。
到80年代,惠普凭其系列的计算机产品而成为业界一家重要的厂商,其产品从桌面机到功能强劲的微电脑可谓门类齐全。这十年标志着惠普已成功步入打印机市场中,由于它成功地推出了可与个人电脑连接的喷墨打印机和激光打印机。
80年代
1980年 惠普首次推出个人电脑产品:HP-85。营业纯收入:$30亿,员工人数:57000人。
1982年 英国惠普公司开发出电子邮件系统,该系统已成为基于微电脑的第一套商用广域网。利用32位“超芯片”技术推出HP 9000技术计算机,它是第一台“桌面式主机”,却拥有像60年代尺寸庞大的主机同样的性能。
1984年 惠普的技术首次应用到HP Thinkjet打印机上。今天的喷墨打印机仍不断出现技术突破,而其价格更在持续下调。推出公司最成功的单机产品:HP LaserJet激光打印机。今天的激光打印机已被业界视为激光打印机的世界标准。
1985年 营业纯收入:$65亿,员工人数:85,000人。
1986年 推出基于创新型RISC(精简指令体系结构)的多系列计算机系统。用于此项产品的开发费用高达25亿美元,开发持续5年时间,是惠普在研究与开发上投入最大的一项。
1987年 比尔·休利特退休并辞去副董事长职务。Walter Hewlett(比尔之子)和 David Woodley Packard(戴维之子)当选为公司董事。
1988年 惠普跃升至幸福杂志500家企业排名榜前50位,列第49位。
1989年 惠普庆祝公司成立50周年。惠普新型原子辐射检测仪成为第一台利用气相色谱法来测定所有元素(氦除外)的分析仪器。收购阿波罗计算机公司(马萨诸塞, Chelmsford),这是一家工作站制造商。
90年代
尽管现在就来总结这十年尚为时过早,然而至此,惠普已充分证明了它在测量、计算机和通讯领域所取得的非凡成功。惠普在信息的收集、分析、存储和显示方面所展现的能力必将进一步推动信息高速公路转化为现实。
1990年 推出 HP LaserJet III激光打印机。惠普实验室在东京开设研究机构。营业纯收入:$132亿,员工人数:91,500人。
惠普图形计算器
1991年 预装Lotus 1-2-3应用软件的 HP 95LX掌上电脑 (约重
11昂司),具有先进的计算特性和数据通讯功能。HP SONOS
1500心血管成像仪系统允许医生利用超声波处理方法对心脏病进行非接触式的定量分析。普彩色扫描仪可实现计算机读取照片或其它可视图像。
1992年 路·普莱特(Lew Platt)出任惠普总裁和首席执行官。推出 Corporate Business Systems --九台 HP 3000和 HP 9000计算机系统,拥有大型主机功能,价格却降低了90%。
1993年 推出3磅重的 HP OmniBook
300“超便携式”个人电脑,在横跨美国的飞行旅途中,其电池电力足够电脑连续运行。交付第 1,000万台HP
LaserJet激光打印机,惠普现已售出2000万台打印机。戴维·帕卡德离任退休。路·普莱特(Lew
Platt)当选为公司董事长、总裁及首席执行官。
惠普相机
1994年营业纯收入达$250亿。惠
普生产出世界最亮的LED(发光二级管)。由于同时具备高亮度、高可靠性和低耗能的特点,因而它在很多新应用上已取代了白炽灯。推出HP Color
LaserJet彩色激光打印机。推出OfficeJet打印/传真/复印一体机。推出带内置式Pocket Quicken的HP
200LX掌上电脑。
1995年 营业纯收入达$315亿;员工人数:105200人。收购Convex计算机公司(德克萨斯;Richardson),这是一家高性能计算解决方案的供应商。推出HP OmniGo 100掌上电脑。向家用电脑市场推出 HP Pavilion PC机。1996年3月26日,公司创始人戴维帕卡德辞世。推出第1台HP LaserJet 5SI“网络打印机”。
1997年 营业收入:$429亿,雇员:121900人。并购电子支付系统行业领先厂商VeriFone,从而增强了HP公司电子商务能力。发起以“扩大潜在价值(Expanding Possibilities)”为主题的为期多年的新消费营销计划。
21世纪
惠普CQ笔记本
2001年9月4日惠普以价值250亿美元的股票收购对手康柏电脑公司。
2002年5月,两公司合并完成。
2003年的8028亿美元,从而在全球基础架构服务市场中占有62%的份额
2006年第四季度,超越戴尔(Dell)成为全球第一大PC厂商。
2008年 财政营收额突破1000亿美元
截止目前(2012年初),惠普一直保持全球第一大PC厂商地位。
(来自百度百科)要满意哦,亲~

" *** 作系统是控制其他程序运行,管理系统资源并为用户提供 *** 作界面的系统软件的集合。 *** 作系统(英语;Operating
System,简称OS)是一管理电脑硬件与软件资源的程序,同时也是计算机系统的内核与基石。 *** 作系统身负诸如管理与配置内存、决定系统资源供需的优先
次序、控制输入与输出设备、 *** 作网络与管理文件系统等基本事务。 *** 作系统是管理计算机系统的全部硬件资源包括软件资源及数据资源;控制程序运行;改善人机
界面;为其它应用软件提供支持等,使计算机系统所有资源最大限度地发挥作用,为用户提供方便的、有效的、友善的服务界面。 *** 作系统是一个庞大的管理控制程
序,大致包括5个方面的管理功能:进程与处理机管理、作业管理、存储管理、设备管理、文件管理。目前微机上常见的 *** 作系统有DOS、OS/2、UNIX、
XENIX、LINUX、Windows、Netware等。但所有的 *** 作系统具有并发性、共享性、虚拟性和不确定性四个基本特征。 *** 作系统的型态非常多样,不同机器安装的OS可从简单到复杂,可从手机的嵌入式系统到超级电脑的大型 *** 作系统。许多 *** 作系统制造者对OS的定义也不大一致,例如有些OS集成了图形化使用者界面,而有些OS仅使用文本接口,而将图形界面视为一种非必要的应用程序。 *** 作系统理论在计算机科学中为历史悠久而又活跃的分支,而 *** 作系统的设计与实现则是软件工业的基础与内核。[编辑本段]分类目前的 *** 作系统种类繁多,很难用单一标准统一分类。根据应用领域来划分,可分为桌面 *** 作系统、服务器 *** 作系统、主机 *** 作系统、嵌入式 *** 作系统;根据所支持的用户数目,可分为单用户(MSDOS、OS/2)、多用户系统(UNIX、MVS、Windows);根据硬件结构,可分为网络 *** 作系统(Netware、Windows NT、OS/2 warp)、分布式系统(Amoeba)、多媒体系统(Amiga);根据 *** 作系统的使用环境和对作业处理方式来考虑,可分为批处理系统(MVX、DOS/VSE)、分时系统( Linux、UNIX、XENIX、Mac OS)、实时系统(iEMX、VRTX、RTOS,RT WINDOWS); 
 根据 *** 作系统的技术复杂程度,可分为简单 *** 作系统、智能 *** 作系统(见智能软件)。所谓的简单 *** 作系统,指的是计算机初期所配置的 *** 作系统,如IBM公司
的磁盘 *** 作系统DOS/360和微型计算机的 *** 作系统CP/M等。这类 *** 作系统的功能主要是 *** 作命令的执行,文件服务,支持高级程序设计语言编译程序和控
制外部设备等。下面介绍一下 *** 作系统的五大类型:批处理 *** 作系统、分时 *** 作系统、实时 *** 作系统、网络 *** 作系统、分布式 *** 作系统。 1 批处理 *** 作系统
 批处理(Batch
Processing) *** 作系统的工作方式是:用户将作业交给系统 *** 作员,系统 *** 作员将许多用户的作业组成一批作业,之后输入到计算机中,在系统中形成一
个自动转接的连续的作业流,然后启动 *** 作系统,系统自动、依次执行每个作业。最后由 *** 作员将作业结果交给用户。 批处理 *** 作系统的特点是:多道和成批处理。2.分时 *** 作系统
 分时(Time
Sharing) *** 作系统的工作方式是:一台主机连接了若干个终端,每个终端有一个用户在使用。用户交互式地向系统提出命令请求,系统接受每个用户的命
令,采用时间片轮转方式处理服务请求,并通过交互方式在终端上向用户显示结果。用户根据上步结果发出下道命。分时 *** 作系统将CPU的时间划分成若干个片
段,称为时间片。 *** 作系统以时间片为单位,轮流为每个终端用户服务。每个用户轮流使用一个时间片而使每个用户并不感到有别的用户存在。分时系统具有多路
性、交互性、“独占”性和及时性的特征。多路性指,伺时有多个用户使用一台计算机,宏观上看是多个人同时使用一个CPU,微观上是多个人在不同时刻轮流使
用CPU。交互性是指,用户根据系统响应结果进一步提出新请求(用户直接干预每一步)。“独占”性是指,用户感觉不到计算机为其他人服务,就像整个系统为
他所独占。及时性指,系统对用户提出的请求及时响应。它支持位于不同终端的多个用户同时使用一台计算机,彼此独立互不干扰,用户感到好像一台计算机全为他
所用。常见的通用 *** 作系统是分时系统与批处理系统的结合。其原则是:分时优先,批处理在后。“前台”响应需频繁交互的作业,如终端的要求; “后台”处理时间性要求不强的作业。3.实时 *** 作系统
 实时 *** 作系统(RealTimeOperatingSystem,RTOS)是指使计算机能及时响应外部事件的请求在规定的严格时间内完成对该事件的处
理,并控制所有实时设备和实时任务协调一致地工作的 *** 作系统。实时 *** 作系统要追求的目标是:对外部请求在严格时间范围内做出反应,有高可靠性和完整性。其
主要特点是资源的分配和调度首先要考虑实时性然后才是效率。此外,实时 *** 作系统应有较强的容错能力。4.网络 *** 作系统 网络 *** 作
系统是基于计算机网络的,是在各种计算机 *** 作系统上按网络体系结构协议标准开发的软件,包括网络管理、通信、安全、资源共享和各种网络应用。其目标是相互
通信及资源共享。在其支持下,网络中的各台计算机能互相通信和共享资源。其主要特点是与网络的硬件相结合来完成网络的通信任务。5.分布式 *** 作系统
 它是为分布计算系统配置的 *** 作系统。大量的计算机通过网络被连结在一起,可以获得极高的运算能力及广泛的数据共享。这种系统被称作分布式系统
(DistributedSystem)
。它在资源管理,通信控制和 *** 作系统的结构等方面都与其他 *** 作系统有较大的区别。由于分布计算机系统的资源分布于系统的不同计算机上, *** 作系统对用户的资
源需求不能像一般的 *** 作系统那样等待有资源时直接分配的简单做法而是要在系统的各台计算机上搜索,找到所需资源后才可进行分配。对于有些资源,如具有多个
副本的文件,还必须考虑一致性。所谓一致性是指若干个用户对同一个文件所同时读出的数据是一致的。为了保证一致性, *** 作系统须控制文件的读、写、 *** 作,使
得多个用户可同时读一个文件,而任一时刻最多只能有一个用户在修改文件。分布 *** 作系统的通信功能类似于网络 *** 作系统。由于分布计算机系统不像网络分布得很
广,同时分布 *** 作系统还要支持并行处理,因此它提供的通信机制和网络 *** 作系统提供的有所不同,它要求通信速度高。分布 *** 作系统的结构也不同于其他 *** 作系
统,它分布于系统的各台计算机上,能并行地处理用户的各种需求,有较强的容错能力。[编辑本段]功能 *** 作系统的主要功能是资源管理,
程序控制和人机交互等。计算机系统的资源可分为设备资源和信息资源两大类。设备资源指的是组成计算机的硬件设备,如中央处理器,主存储器,磁盘存储器,打
印机,磁带存储器,显示器,键盘输入设备和鼠标等。信息资源指的是存放于计算机内的各种数据,如文件,程序库,知识库,系统软件和应用软件等。资源管理 
 系统的设备资源和信息资源都是 *** 作系统根据用户需求按一定的策略来进行分配和调度的。 *** 作系统的存储管理就负责把内存单元分配给需要内存的程序以便让它
执行,在程序执行结束后将它占用的内存单元收回以便再使用。对于提供虚拟存储的计算机系统, *** 作系统还要与硬件配合做好页面调度工作,根据执行程序的要求
分配页面,在执行中将页面调入和调出内存以及回收页面等。处理器管理或称处理器调度,是 *** 作系统资源管理功能的另一个重要内容。在一个允许多
道程序同时执行的系统里, *** 作系统会根据一定的策略将处理器交替地分配给系统内等待运行的程序。一道等待运行的程序只有在获得了处理器后才能运行。一道程
序在运行中若遇到某个事件,例如启动外部设备而暂时不能继续运行下去,或一个外部事件的发生等等, *** 作系统就要来处理相应的事件,然后将处理器重新分配。 
  *** 作系统的设备管理功能主要是分配和回收外部设备以及控制外部设备按用户程序的要求进行 *** 作等。对于非存储型外部设备,如打印机、显示器等,它们可以直
接作为一个设备分配给一个用户程序,在使用完毕后回收以便给另一个需求的用户使用。对于存储型的外部设备,如磁盘、磁带等,则是提供存储空间给用户,用来
存放文件和数据。存储性外部设备的管理与信息管理是密切结合的。信息管理是 *** 作系统的一个重要的功能,主要是向用户提供一个文件系统。一般
说,一个文件系统向用户提供创建文件,撤销文件,读写文件,打开和关闭文件等功能。有了文件系统后,用户可按文件名存取数据而无需知道这些数据存放在哪
里。这种做法不仅便于用户使用而且还有利于用户共享公共数据。此外,由于文件建立时允许创建者规定使用权限,这就可以保证数据的安全性。程序控制 
 一个用户程序的执行自始至终是在 *** 作系统控制下进行的。一个用户将他要解决的问题用某一种程序设计语言编写了一个程序后就将该程序连同对它执行的要求输
入到计算机内, *** 作系统就根据要求控制这个用户程序的执行直到结束。 *** 作系统控制用户的执行主要有以下一些内容:调入相应的编译程序,将用某种程序设计语
言编写的源程序编译成计算机可执行的目标程序,分配内存储等资源将程序调入内存并启动,按用户指定的要求处理执行中出现的各种事件以及与 *** 作员联系请示有
关意外事件的处理等。人机交互 *** 作系统的人机交互功能是决定计算机系统“友善性”的一个重要因素。人机交互功能主要靠可输入输出
的外部设备和相应的软件来完成。可供人机交互使用的设备主要有键盘显示、鼠标、各种模式识别设备等。与这些设备相应的软件就是 *** 作系统提供人机交互功能的
部分。人机交互部分的主要作用是控制有关设备的运行和理解并执行通过人机交互设备传来的有关的各种命令和要求。早期的人机交互设施是键盘显示器。 *** 作员通
过键盘打入命令, *** 作系统接到命令后立即执行并将结果通过显示器显示。打入的命令可以有不同方式,但每一条命令的解释是清楚的,唯一的。随着计算机技术的
发展, *** 作命令也越来越多,功能也越来越强。随着模式识别,如语音识别、汉字识别等输入设备的发展, *** 作员和计算机在类似于自然语言或受限制的自然语言这
一级上进行交互成为可能。此外,通过图形进行人机交互也吸引着人们去进行研究。这些人机交互可称为智能化的人机交互。这方面的研究工作正在积极开展。[编辑本段] *** 作系统大全早期 *** 作系统(专利保护)TRS-DOS,ROM OS's TI99-4 Commodore PET,64,和 VIC-20, 第一套IBM-PC 苹果电脑 Sinclair Micro和QnX等 非Unix商业 *** 作系统CPM *** 作系统 MP/M-80 UCSD P-system Mini-FLEX SSB-DOS CP/M-86 DR-DOS FreeDOS MS-DOS PC-DOS Mach 由卡纳尼基梅隆大学研究 L4微内核 第二代微内核 CHORUS Choices Multics OS-9 NSJ Netware:一种网络服务器 *** 作系统 Unix及类似系统A/UX(Apple UNIX) Unix 微软Xenix ChorusOS Cromix UNIflex OS-9 IBM的AIX BSD FreeBSD NetBSD OpenBSD DragonFly BSD PC-BSD Digital UNIX,即之后康柏Tru64 DNIX HP的HP-UX GNU/Hurd SGI的IRIX Inferno Linux(或称GNU/Linux) Mac OS X MenuetOS Minix OSF/1 Plan9 SCO的SCO UNIX Sun的SunOS,即之后的Solaris System V Ultrix UniCOS 麒麟 *** 作系统(Kylin),由国防科技大学、中软公司、联想公司、浪潮公司和民族恒星公司五家单位合作研制的服务器 *** 作系统 OS/390 z/OS Syllable 其他AcornArthur ARX RISC OS RISCiX AmigaAmigaOS Atari STTOS MultiTOS MiNT 苹果电脑(Apple/Macintosh)Apple DOS ProDOS Mac OS Mac OS X Mac OS X 104 TigerMac OS X 105 LeopardMac OS X 106 Snow Leopard (Alpha)pink OS BeOS A/UX BeBeOS BeIA Digital/康柏(Compaq)AIS OS-8 RSTS/E RSX-11 RT-11 TOPS-10 TOPS-20 VMS(后更名为OpenVMS) IBMOS/2 AIX OS/400 OS/390 VM/CMS DOS/VSE VSE/SP VSE/ESA OS/360 MFT MVT SVS MVS TPF ALCS z/OS PC-DOS pink OS 微软(Microsoft)MS-DOS Xenix Microsoft Bob 基于MS-DOS *** 作系统的Windows Windows 10 Windows 20 Windows 31 Windows 95 Windows 98 Windows ME Windows NT Windows NT 35 Windows NT 4 Windows 2000 Windows XP Windows XP SP1Windows XP SP2Windows XP SP3Windows XP Media Center Edition Windows XP Home Edition Windows XP Tablet PC EditionWindows XP Professional Windows XP Professional x64 Edition Windows Server 2003 Windows Server 2003 64-bit Edition Windows Vista Windows Vista SP1Windows Vista Home Basic Windows Vista Home Premium Windows Vista Business Windows Vista Ultimate Windows Vista Enterprise Windows Vista Starter Windows Server 2008Windows Server ""Longhorn"" Web x86Windows Server ""Longhorn"" Web x64Windows Server ""Longhorn"" Standard x86Windows Server ""Longhorn"" Standard x64Windows Server ""Longhorn"" Enterprise x86Windows Server ""Longhorn"" Enterprise x64Windows Server ""Longhorn"" Datacenter x86Windows Server ""Longhorn"" Datacenter x64Windows 7Windows Server 2008NovellNetWare Unixware SUSE Linux NeXTNEXTSTEP(即之后的Mac OS X) Plan 9 Inferno Prime ComputerPrimos 西门子BS2000 - 用于西门子公司的大型主机。 SINIX(也称Reliant UNIX) - 用于西门子公司的UNIX电脑系统。 个人电子助理(PDA) *** 作系统Palm OS Pocket PC EPOC Microsoft Windows CE Linux 智能手机 *** 作系统Windows Mobile系列 Embedded Linux由Montavista创造,在Motorola's A760,E680等机型上使用 Mobilinux由Montavista创造 Symbian OS系列 Android(Google手机 *** 作系统)其他 *** 作系统动态可扩展 *** 作系统 MIT的Exo Kernel 华盛顿大学的 SPIN 哈佛大学的 VINO illinois大学的Choices ReactOS[编辑本段]历史 
 各类平台上 *** 作系统的功能演化综观电脑之历史, *** 作系统与电脑硬件的发展息息相关。 *** 作系统之本意原为提供简单的工作排序能力,后为辅助更新更复杂的硬
件设施而渐渐演化。从最早的批次模式开始,分时机制也随之出现,在多处理器时代来临时, *** 作系统也随之添加多处理器协调功能,甚至是分布式系统的协调功
能。其他方面的演变也类似于此。另一方面,在个人电脑上,个人电脑之 *** 作系统因袭大型电脑的成长之路,在硬件越来越复杂、强大时,也逐步实践以往只有大型
电脑才有的功能。总而言之, *** 作系统的历史就是一部解决电脑系统需求与问题的历史。1980年代前Maurice Vincent Wilkes,微程序的创建者
 IBM
System/360,大型主机的经典之作第一部电脑并没有 *** 作系统。这是由于早期电脑的建立方式(如同建造机械算盘)与效能不足以执行如此程序。但在
1947年发明了晶体管,以及莫里斯·威尔克斯(Maurice V
Wilkes)发明的微程序方法,使得电脑不再是机械设备,而是电子产品。系统管理工具以及简化硬件 *** 作流程的程序很快就出现了,且成为 *** 作系统的滥觞。
到了1960年代早期,商用电脑制造商制造了批次处理系统,此系统可将工作的建置、调度以及执行序列化。此时,厂商为每一台不同型号的电脑创造不同的 *** 作
系统,因此为某电脑而写的程序无法移植到其他电脑上执行,即使是同型号的电脑也不行。到了1964年,IBM
System/360推出了一系列用途与价位都不同的大型电脑,而它们都共享代号为OS/360的 *** 作系统(而非每种产品都用量身订做的 *** 作系统)。让单
一 *** 作系统适用于整个系列的产品是System/360成功的关键,且实际上IBM目前的大型系统便是此系统的后裔;为System/360所写的应用程
序依然可以在现代的IBM机器上执行!OS/360也包含另一个优点:永久贮存设备—硬盘驱动器的面世(IBM称为DASD(Direct
access storage
device))。另一个关键是分时概念的建立:将大型电脑珍贵的时间资源适当分配到所有使用者身上。分时也让使用者有独占整部机器的感觉;而
Multics的分时系统是此时众多新 *** 作系统中实践此观念最成功的。1963年,奇异公司与贝尔实验室合作以PL/I语言建立的
Multics[1],是激发1970年代众多 *** 作系统建立的灵感来源,尤其是由AT&T贝尔实验室的丹尼斯·里奇与肯·汤普逊所建立的Unix
系统,为了实践平台移植能力,此 *** 作系统在1969年由C语言重写;另一个广为市场采用的小型电脑 *** 作系统是VMS。80年代第
一代微型计算机并不像大型电脑或小型电脑,没有装设 *** 作系统的需求或能力;它们只需要最基本的 *** 作系统,通常这种 *** 作系统都是从ROM读取的,此种程序被
称为监视程序(Monitor)。1980年代,家用电脑开始普及。通常此时的电脑拥有8-bit处理器加上64KB内存、屏幕、键盘以及低音质喇叭。而
80年代早期最著名的套装电脑为使用微处理器6510(6502芯片特别版)的Commodore
C64。此电脑没有 *** 作系统,而是以一8KB只读内存BIOS初始化彩色屏幕、键盘以及软驱和打印机。它可用8KB只读内存BASIC语言来直接 *** 作
BIOS,并依此撰写程序,大部分是游戏。此BASIC语言的解释器勉强可算是此电脑的 *** 作系统,当然就没有内核或软硬件保护机制了。此电脑上的游戏大多
跳过BIOS层次,直接控制硬件。

因为凯尔特人队员在推特上发表不适当的推文和视频,所以腾讯取消了凯尔特人的直播赛事儿。

凯尔特人队是一支位于美国马萨诸塞州波士顿的职业篮球队,1947年成立,1949年成为美国男篮职业联赛(NBA)创始球队之一,现为东部联盟的大西洋赛区参赛球队。波士顿凯尔特人队历史上17次荣获NBA总冠军。是夺冠次数最多的NBA球队之一。

最新成绩:2020-21赛季,凯尔特人以东部第7打进季后赛,这也是他们连续第7年打进季后赛。2020-21赛季,凯尔特人在东部季后赛首轮1-4被布鲁克林篮网队淘汰,止步首轮。2021年6月24日,波士顿凯尔特人队与艾米·乌度卡达成协议,乌度卡将成为凯尔特人新任主教练。

视频直播业务就是在点播业务的基础上演变而来。在视频点播业务中所有的节目都是以流媒体文件的格式存储在服务器中。视频直播业务中的节目源,一般为电视信号。电视信号首先通过电视机和将信号分解为图像信号和声音信号。

接口,一般是开发时候给出的api;

在开发中,按照相关的参数传递就可以打得结果;

*** 作系统(英语:operating system,缩写作 OS)是管理计算机硬件与软件资源的计算机程序,同时也是计算机系统的内核与基石。 *** 作系统需要处理如管理与配置内存、决定系统资源供需的优先次序、控制输入与输出设备、 *** 作网络与管理文件系统等基本事务。 *** 作系统也提供一个让用户与系统交互的 *** 作界面。

*** 作系统的类型非常多样,不同机器安装的 *** 作系统可从简单到复杂,可从移动电话的嵌入式系统到超级计算机的大型 *** 作系统。许多 *** 作系统制造者对它涵盖范畴的定义也不尽一致

*** 作系统 和 接口  是不一样的

聚变发展史
1 绪 论11聚变能能源作为社会进步的三大支柱之一,是社会进步和人民生产生活所需的基本条件。伴随着社会的发展,特别是我国现阶段的快速发展,对能源的需求更加旺盛。能源问题不仅关系我们国家未来的发展,更关系到人类未来的发展方向。能源问题与民生国事紧密相联,国家要发展,能源结构和能源体系必需合理完整。而我国的能源体系发展比较畸形,化石燃料的应用比例较高。就电力系统而言,煤电所占比重超过70%。目前,全世界每年新探明的石油储量小于当年的开采量,呈现了石油的总危机。煤的储量比石油丰富。然而,这类化石燃料的资源终究很有限的。目前已知可利用的化石燃料热值估约100 Q(1 Q=105×102 J),设全球每年消费能量1 Q(为目前的5倍),只敷百年之用。 自从20世纪中叶开始建立裂变原子能电站以来,至今它已发展为成熟的技术。虽然核裂变燃料(铀)的热值比碳氢燃料高得多,但是根据目前的估计,对于有开采价值的铀矿来说,即使应用增殖堆来增殖燃料,其可利用的热值总数200 Q,也只够两个世纪的需要。通过各种能源的应用比较,许多人认为要想最终解决人类的能源问题,必须大规模的发展核能。核能的应用主要有两种方式:核裂变和核聚变。而核聚变仍热存在原燃料枯竭和环境污染等问题,所以能源问题的最终解决途径还得归结到核聚变的发展。而核聚变最大的优势之一是其丰富的燃料储量,其来源是海水蕴含极丰富的氢元素的同位素氘和氚。1克氘完全燃烧相当于8吨煤燃烧所释放的能量。因此,核聚变即是清洁的、又是用之不竭的能源。因此,有必要发展受控热核聚变以弥补化石燃料与核裂变燃料带来的能源缺点。受控热核聚变的燃料是重氢-氘,它普遍地存在于自然界的水中。重水(D2O)约占水分子数的七千分之一。聚变燃料具有很高的热值,1公斤氘相当于4公斤的铀(235U),8600吨汽油,或11000吨煤,也就是1桶水的聚变能抵400桶的汽油。全地球水的总聚变潜能为15×1010Q,足供人类使用百亿年,超过迄今为止地球的历史年龄。就拿较易实现的氘-氚聚变来说,再生氚所需要的锂(6Li)也足够用千年。因此,可以说,如果受控热核聚变能够实现将为人类提供取之不尽的新能源。目前,就燃料成本来说(按热值计),氘比煤便宜千倍,比石油便宜万倍[1]。
核聚变与核裂变相比较,除了其燃料无比丰富与价廉之外,还有放射性污染相对少的优点。聚变过程中的氚虽是放射性元素,但其半衰期比较短(12年),且其放射性低,生物效应也较弱,比起裂变碎片的放射性处理要简单得多。但聚变堆与裂变堆中都有经中子撞击而激活的结构物质,这就必须要设置屏蔽物进行有效屏蔽。除了纯聚变反应堆以外,也有可能使用聚变-裂变混合堆,它利用聚变产生的强大中子流,使裂变堆中的238U或232Th转换为239Pu或233U,成为有用的裂变燃料。并且14MeV的中子也能引起238U裂变的能量输出倍增效应。它使聚变有增益的条件放宽,较易实现。因此,发展聚变能是社会向前发展的根本动力,是解决当今社会存在的各种各样能源问题和环境问题的最终途径。所以研究核聚变,使它成为可控的、安全的、清洁的高品质能源。 111国际受控核聚变的发展史在1919年,英国物理学家、质谱仪的发明者阿斯顿(FWAston)在试验中发现氦-4质量比组成氦的四个氢原子质量的总和大约小1%左右,根据爱因斯坦的质能方程所知,其质量差和光速的平方的乘积与四个氢原子结合成一个氦原子时所释放的能量相当。著名的物理学家卢瑟福也几乎在同时证明了足够大量的轻原子核相互碰撞可以发生核反应,但在1933时他又宣布:从原子中寻找能源无异于痴人说梦。1929年,阿特金森(Atkinson)和奥特麦斯(Houtermans)从理论上计算了氢原子在几千万度高温下聚变成氦原子的可能性,为以后的核聚变奠定了理论基础[2]。1934年,澳大利亚物理学家奥利芬特(Oliphant,Marcus Laurence Elwin 1901~)用氘轰击氘,生成一种具有放射性的新同位素氚,实现了第一个D-D核聚变反应。1942 年美国普渡大学的施莱伯(Schreiber )和金(King),首次实现了D-T 反应。第二次世界大战时,曼哈顿计划的成功实施,科学家们也在逐步的观察核聚变发应的可能性。通过科学家们不断的努力实验研究,终于于1952年 11月1日在西太平洋埃尼威托克岛秘密爆炸了一颗氢d,爆炸时产生的巨大能量标志着人类成功的实现了核聚变。但同时,有一个问题困扰了世界上的科学家,那就是如何能够使核聚变缓慢的释放聚变能,能够像核裂变一样转换成电能为人类提供生产生活所必需的能源?1951年的时候,阿根廷科学家称他们已经成功的实现了可控核聚变,虽然后来被证明是错误的,但也为世界上的科学家们提供了很多有用的研究信息[3]。20世纪50年代的时候,世界上很多国家都秘密的展开了对核聚变的相关研究。当时核聚变研究处于世界领头羊的是美国和苏联,1952年的时候,物理学家库幸和沃尔建造小型等离子体环形箍缩装置,后来由建造了一种比较稳定的大型箍缩装置ZETA,从1954年一直使用到1958年。在苏联,受控核聚变也在高度保密的情况下有条不紊的进行。在冷战结束,即1956年,苏联最高赫鲁晓夫访问英国,正式标志着核聚变研究国际合作的开始。但正式的开始却是1958年在日内瓦召开的原子能国际大会,大会正式决定展开国际合作与交流。
但是在此后的10年时间内核聚变研究进展一直缓慢,令各国都很困惑,相比于核裂变从发现到应用的时间,核聚变的进展一直慢的出奇。直到苏联物理学家塔姆和萨哈罗夫在托卡马克装置上取得非常好的等离子体参数,后来英国卡拉姆实验室主任亲自带最先进的激光散射设备证实了托卡马克装置拥有比塔姆等报告的参数还要高的温度后,托卡马克就逐渐成为了国际磁约束核聚变烟酒的主要设备,同时也在世界范围内掀起了托卡马克的研究热潮。在托卡马克研究取得巨大的进展时,受控核聚变也取得了巨大的成功。1991年,在欧洲的JET装置上首次获得了17WM的聚变能[4]。紧接着,在1993年,在美国的TFTR上获得了氘氚作为燃料的10WM的聚变能。1997年,在欧洲的JET获得了16WM的聚变能。为了在核聚变方面取得更多的成就,国际上开展了第二次核方面的合作。1985年,在美国和苏联的倡导下,加上成员国日本和欧盟。有他们共同出资合作设计了国际热核实验反应堆(International Thermonuclear Experimental Reactor,缩写为ITER)。建造ITER的目的就是看是否能够建造核聚变反应堆。进入21世纪后,中国、韩国和印度也相继加入ITER计划,使得该计划的研发能力的到加强。为了解决人类的能源问题,受控核聚变从遐想、各国的秘密研究再到国际间的规模性合作。核聚变经历相当的慢长时间,ITER的建造,使得该研究终于看到了一点曙光,也使得人类的能源问题有了一点希望。在磁约束聚变取得进步的同时,惯性约束聚变也取得了前足的进步。从60年代激光器问世以后,我国的核物理科学家王淦昌和前苏联的巴索大院士分别独立的提出用强激光器来引发核聚变反应的设想。从此以后,世界上研究核聚变的国家争相开展了用强激光引发的核聚变,称之为激光惯性约束核聚变(ICF)。目前ICF还是处于科学实验室研究阶段。美国制订了一系列核聚变的发展计划,1994年11月,被称为“国家点火设施”的激光核聚变计划正式签发[5]。法国授权原子能委员会进行“兆焦耳激光 (LMJ)”的研究和发展阶段计划。
最近关注美国国家点火装置(NIF)进展情况的英国科学家,计划在英国兴建世界首座核聚变发电站,并表示有望在20年内投产。112 中国受控核聚变的发展史从二十世纪五十年中期开始,我国就进行了核聚变方面的研究,主要的研究集中在两个研究基地中进行,即核工业西南物理研究院和中科院等离子体物理研究所。1984年,中国自主研究的环流器一号投入运行,1994年,中科院等离子体所研制出HT-7超导托卡马克,使我国成为第四个拥有超导托卡马克的国家[6]。2002年,成都核工业西南物理研究所成功建成环流器二号并投入运行。2005年,我国建成了世界首个非圆截面全超导托卡马克——EAST实验装置。随着中国在核聚变方面的研究取得越来越好的成绩,我国在国际核聚变研究中占据越来越重的地位[7]。我国不仅在惯性约束聚变方面取得长足的进步,在惯性约束聚变方面,由于我国先进的激光技术,也取得了令人喜悦的成绩,我国惯性约束聚变的研究主要集中在“神光”系列方面的研究[7]。EAST的相关状况:最近2006年1月,EAST完成了预总装,2月20日进入抽真空和降温、通电实验阶段。EAST在2007年1-2月的第二轮等离子体放电实验中,获得了稳定、可控具有大拉长比的偏滤器位形等离子体放电,最大等离子体电流达05MA,在02MA等离子体电流下最长放电达9秒,并成功完成了磁体、低温、总控和保护、等离子体控制等多项重要工程测试和物理实验。2008年5月12日,在EAST装置真空室内部组件安装总体验收会上,等离子体所李建刚所长宣布EAST装置真空室内部组件安装全面胜利完成[8]。 2009年11月13日,EAST/HT-7低温系统改造工程的子工程“液氮传输线改造工程”顺利竣工,已成功实现液氮传输功能。HT-7的相关状况:2005年12月14日,HT-7获得了1000万摄氏度、持续306秒的等离子体放电。2007年4月13日,HT-7原有的数据服务器系统完成了大规模的升级,新数据服务器系统由5台专业服务器组成[9]。2007年5月6日,为完成HT-7实验要求,离子回旋高频发射机末级系统与HT-7托卡马克装置成功连接,取得了输入功率为370KW的可喜成绩。2008年3月21日凌晨,HT-7物理实验再次创下新纪录:连续重复实现了长达400秒的等离子体放电,电子温度1200万度,中心密度05×1019立方米。这是目前国际同类装置中时间最长的高温等离子体放电。2009年11月13日,EAST/HT-7低温系统改造工程的子工程“液氮传输线改造工程”顺利竣工,已成功实现液氮传输功能。
12受控核聚变的发展阶段在过去的的50多年的受控核聚变的研究中,大致可以分为六个阶段:第一阶段,各国科学家相继发明各种类型的聚变装置;第二阶段,美国、苏联、英国等国在极其保密情况下开展激烈竞争;第三阶段,各国开始对部分核聚变解密并将重点转移到对高温等离子体基本性质的研究;第四阶段,世界范围内出现托卡马克研究热潮并不断取得重要进展;第五阶段,国际合作研究热核聚变实验反应堆;第六阶段,激光核聚变等大量惯性约束核聚变装置的发展。121 聚变研究初期的各类装置从核聚变被发现之后,其聚变释放的大量能量和丰富的燃料储量激起了各国科学家极大的研究兴趣。为了实现聚变能的可控持续的释放,初期科学家发明了各种类型的聚变装置,比较有价值的是:(1)箍缩装置 1946年,英国物理学教授汤姆孙和他的同事布莱克曼提出了环形箍缩原理,即利用环形等离子体自身产生的磁场约束等离子体,使其与器壁脱离,1947年初,他们便建立了一个环形箍缩装置,还建造了一个直线箍缩装置。 (2)仿星器 普林斯顿大学天体物理学教授斯必泽于1951提出了将一个环形容器扭成8字形来解决环形装置中漂移问题的设想,并于同年制成了8字形的仿星器,主要概念是等离子体沿8字形仿星器内绕一圈时总的漂移便被抵消了[10]。(3)磁镜装置 1952年,波斯特提出利用磁镜效应解决直线型聚变装置中等离子体从终端泄漏的问题,同年,他们建立万一个直线型等离子体装置,容器是一个内径为10cm长1m 的硬质玻璃管,外部绕有螺旋管线圈,每个端部都放置一个磁镜线圈,以便在端部产生比中心部位强得多的磁场。(4)托卡马克 二十世纪50年代初,苏联物理学家塔姆和萨哈罗夫提出在环形等离子休通过大电流感应产生的极向磁场跟很强的环向和纵向磁场结合起来, 便可能实现等离子体平衡位形[11]。莫斯科的库尔恰托夫研究所在阿齐莫维奇领导下开展了此项实验研究,他们在环形陶瓷真空室外面套很多匝线圈,充电后的电容器组向这些串联的线圈放电,在真空室内形成了环形磁场,由变压器回路放电产生的等离子体电流自身感应的磁场叫做极向磁场,外部线圈产生的磁场叫做纵向磁场,该线圈称为纵场线圈,他们将这种装置叫做托卡马克。
122 激烈竞争20世纪50年代初期,受控核聚变在研究初期就受到了广泛的重视,美国的普林斯顿大学、洛斯阿拉莫斯科学实验室、加利福尼亚的利弗莫辐射实验室和橡树岭国家实验室都开展核聚变研究。1953年, 美国原沪能委员会成立了“ 薛伍德方案” 实施小组专门负责核聚变研究,并且拨出了大量研究经费。同时,苏联也在秘密的加大受控核聚变的研究力度。受控核聚变之所以如此受到重视,有各方面的原因,从国际大环境来讲,当时作为世界上的两大超级大国美国和苏联各自代表的阵营正处于冷站时期,研究核聚变可能在军事上为其开辟新的威慑性武器。从而两大阵营在不明对方的进展情况下,不断的增加对受控核聚变的经费投入以加大研究的进展。又因为研究受控核聚变是为了探索理想的新能源,为人类造福, 这对于科学家具有很大吸引力[12]。从社会上讲,有识之士早在1951年就指出地球上煤、石油等矿物燃料资源在100年后可能会枯竭,因此必须探索研究新能源,核能是重要的候选者,但是裂变能源对环境的放射性污染是令人担忧的,而核聚变能源没有污染问题,很容易受到社会的承认和接纳。123 解密和重点转移1958年是核聚变研究发生重大转折的一年,研究初期的过高期望没有实现,各类装置的高温等离子体普遍出现不稳定性现象,约束性能很差,等离子体温度也与受控核聚变的要求相差甚远。各国的秘密研究已经阻碍了受控核聚变的研究进展,于是,在1958年日内瓦举行的第二届和平利用原子能国际会议上,美国展出了各种各样的核聚变实验装置,有的是实物,有的是模型,还公布了所有研究资料,从此以后,国际学术交流日趋频繁。严格保密,各国之间互相封锁情报当然是阻碍核聚变研究发展的重要原因,此外,当时的重点是寻找实现核聚变的具体途径,对高温等离子体基本性质缺乏系统的研究也是重要原因[13]。
核聚变发展史
1 绪 论
11聚变能
能源作为社会进步的三大支柱之一,是社会进步和人民生产生活所需的基本条件。伴随着社会的发展,特别是我国现阶段的快速发展,对能源的需求更加旺盛。能源问题不仅关系我们国家未来的发展,更关系到人类未来的发展方向。
能源问题与民生国事紧密相联,国家要发展,能源结构和能源体系必需合理完整。而我国的能源体系发展比较畸形,化石燃料的应用比例较高。就电力系统而言,煤电所占比重超过70%。
目前,全世界每年新探明的石油储量小于当年的开采量,呈现了石油的总危机。煤的储量比石油丰富。然而,这类化石燃料的资源终究很有限的。目前已知可利用的化石燃料热值估约100 Q(1 Q=105×102 J),设全球每年消费能量1 Q(为目前的5倍),只敷百年之用。

虚拟化技术最大的实用性就是系统里装虚拟机。

比如现在已经是Win7或更高系统的时代了,但你有些程序还想在XP下使用,那完全不必再装一个XP,直接装微软自己的XP虚拟机就行。可以在当前系统中虚拟出一个XP来,就像一台真正的电脑一样使用,要开机,要装驱动,要插U盘……一切都是用鼠标来完成的,是虚拟现实中的 *** 作。这就是虚拟化最直接的用途。

如果你的CPU不支持虚拟化技术,那么,你就不能用微软官方的虚拟机。

在BIOS里,找到Virtualization,进去后把虚拟化的选项打开即可。

注意,有些老CPU,比如低版本的奔腾双核,不支持,那就不能打开了

扩展资料:

在计算机中,虚拟化(英语:Virtualization)是一种资源管理技术,是将计算机的各种实体资源,如服务器、网络、内存及存储等,予以抽象、转换后呈现出来,打破实体结构间的不可切割的障碍,使用户可以比原本的组态更好的方式来应用这些资源。这些资源的新虚拟部份是不受现有资源的架设方式,地域或物理组态所限制。一般所指的虚拟化资源包括计算能力和资料存储。

在实际的生产环境中,虚拟化技术主要用来解决高性能的物理硬件产能过剩和老的旧的硬件产能过低的重组重用,透明化底层物理硬件,从而最大化的利用物理硬件。

微处理器与传统的中央处理器相比,具有体积小、重量轻和容易模块化等优点。微处理器的基本组成部分有:寄存器堆、运算器、时序控制电路,以及数据和地址总线。

自从人类1947年发明晶体管以来,50多年间半导体技术经历了硅晶体管、集成电路、超大规模集成电路、甚大规模集成电路等几代,发展速度之快是其他产业所没有的。半导体技术对整个社会产生了广泛的影响,因此被称为“产业的种子”。

中央处理器是指计算机内部对数据进行处理并对处理过程进行控制的部件,伴随着大规模集成电路技术的迅速发展,芯片集成密度越来越高,CPU可以集成在一个半导体芯片上,这种具有中央处理器功能的大规模集成电路器件,被统称为“微处理器”。需要注意的是:微处理器本身并不等于微型计算机,仅仅是微型计算机的中央处理器。

微处理器已经无处不在,无论是录像机、智能洗衣机、移动电话等家电产品,还是汽车引擎控制,以及数控机床、导d精确制导等都要嵌入各类不同的微处理器。微处理器不仅是微型计算机的核心部件,也是各种数字化智能设备的关键部件。国际上的超高速巨型计算机、大型计算机等高端计算系统也都采用大量的通用高性能微处理器建造

参考资料:

虚拟化技术百度百科

CPU微处理器百度百科


欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/zz/13447225.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-08-08
下一篇 2023-08-08

发表评论

登录后才能评论

评论列表(0条)

保存