嵌牛鼻子:WIFI 80211ax 射频技术
嵌牛提问:80211ax具体是什么,是怎样运作的,又什么优点
嵌牛正文:2013年推出的80211ac标准不仅可在单一空间串流中实现近866Mbit/s的链接速度,还能提供更宽的通道(160MHz)以及更高的调变阶次(256-QAM)。只要使用8个空间串流(标准指定的数量上限),此一技术将可成就高达697Gbit/s的理论速度值。只是,正如同法拉利只能在管制赛道上发挥实力一样,除非您身处射频实验室,否则很难使用到7Gbit/s的高速无线网络。在现实世界中,每当使用者试图在繁忙的机场航厦中使用公共Wi-Fi查看电子邮件,往往会因牛步般的网络速度而备感挫折。
IEEE 80211无线LAN标准的最新修正80211ax将能有效解决此一问题。80211ax又称为「高效率无线标准」(HEW),旨在实现一项极具挑战性的目标: 将用户密集环境中的每位用户平均传输率提升至4倍以上。
强化高密度使用情境网络表现
高效率无线标准具有下列重要功能:
.向下兼容于80211a/b/g/n/ac。
.将火车站、机场等高人口密度地点的每位用户平均传输率提升4倍。
.数据速率和信道宽度与80211ac相似,但可搭配1024-QAM提供新的调变和编码组合(MCS 10和11)。
.透过MU-MIMO和正交频分多任务存取(OFDMA)技术,进行指定的下链和上链多用户作业。
.提供四倍大的OFDM FFT、更窄的子载波间距(密度为4倍)以及更长的符码时间(4倍),进而改善多路径衰减环境以及室外的稳固性和性能。
.改善流量和通道存取情形。
.电源管理更为出色,可带来更长效的电池续航力。
高效率无线标准也可满足下列目标应用的需求:
.行动数据卸除:在2020年,每个月产生的Wi-Fi卸除流量将来到381Exabyte,并持续超越每月的行动流量(306EB)预估值。此一数字相当于每分钟在这些网络中移动超过6,000部蓝光。
.具备众多存取点,且有高密度用户持有异质装置的环境(机场Wi-Fi≠家用Wi-Fi)。
.室外或混合室外的环境。
现有Wi-Fi机制不利高密度传输
80211通讯协议采用了载波感测多路存取(CSMA)方式,在此一方式中,无线基地台(STA)会先感测通道,而且只会在感测到通道闲置时进行传输,藉此尝试避免冲突(图1)。如果任一STA听到有其他STA存在,就会在再次收听前等候一段时间,以待对方停止传输并释放通道。当STA可进行传输时,将会传输完整的封包数据。
Wi-Fi
STA可藉由RTS/CTS封包来调停共享媒体的存取。存取点(AP)每次只会将一个CTS封包发给一个STA,而对方则会将完整的框架送回AP。接着,STA会等候AP用来告知封包已正确接收的确认封包(ACK)。如果STA没有及时收到ACK,就会假设封包与其他传输产生冲突,并进入二进制指数轮询期间。在轮询计数到期后,STA将试图存取媒体并重新传输封包。
此空闲通道评估和冲突预防通讯协议虽有助于将信道平均分配给冲突网域中的所有参与者,但如果参与者数量过于庞大,分配效率会随之下降;多个AP服务区域重迭,则是造成网络效率不彰的另一原因。图2中的某位使用者(使用者1)隶属于左侧的基本服务组(BSS,一组与AP产生关联的无线客户端)。使用者1会与自身BSS内的其他用户一同竞争媒体存取权,接着再与其AP交换数据。不过,这位使用者仍然可以听到来自右侧重迭BSS的流量。
在这个案例中,来自OBSS的流量会触发用户1的轮询程序,导致用户必须历经更长的等待才能得到传输机会,进而大幅拉低他们的平均数据传输率。
第三个有待考虑的因素则为较宽通道的共享。举例来说,北美地区的80211ac只有一个可用的160MHz通道,而欧洲则有两个(图3)。
使用较少的通道规划密集的涵盖范围变得十分困难,而此一现象也迫使网络管理员必须重复使用附近基地台中的信道。如果没有注意且刻意进行电源管理,使用者将会遇到同通道干扰,除了会减损性能之外,还会将通道较宽的既定优势一笔勾销。在调变和编码模式(MCS)8、9、10和11以最高数据速率传送数据时,特别容易遇到低讯噪比的情况,因此格外容易使网络性能受到影响。此外,在现有的80211
网络实作中,如果20MHz信道与80MHz信道重迭,不仅会造成80MHz通道无法使用,用户也会以较窄的通道进行传输。也就是说,在高密度网络中实作80211ac的通道共享,将损及80MHz通道的优势,并以20MHz通道进行传输。
80211ax PHY变更
80211ax标准在物理层导入了多项大幅变更。然而,它依旧可向下兼容于80211a/b/g/n与ac装置。正因如此,80211ax
STA能与旧有STA进行数据传送和接收,旧有客户端也能解调和译码80211ax封包表头档(虽然不是整个80211ax封包),并于80211ax
STA传输期间进行轮询。表1显示此一标准修正最重要的变更以及与现行80211ac的对照。
请注意,80211ax标准将在24GHz和5GHz频带运作。此规格定义了4倍大的FFT,以及数量更多的子载波。不过,80211ax也涵盖了一项重大变更:将子载波间距缩减到先前80211标准的四分之一,以保留现有的通道带宽(图4)。
OFDM符码持续期间和循环前缀区段(Cyclic
Prefix,
CP)也提高4倍,一边维持与80211ac相同的原始链接数据速率,一边提升室内/室外和混合式环境的效率及稳固性。不过,ax标准会于室内环境中指定1024-QAM和较低的循环式前置区段比,以利实现最高的数据速率。
波束成形
80211ax将采用与80211ac相似的明确波束成形程序。在这个程序中,波束成形器会使用Null数据封包启动信道探测程序,而波束成形接收端则会测量通道,并使用波束成形反馈架构(当中包含压缩的反馈矩阵)做出回应。波束成形器将使用这项信息来运算信道矩阵H。随后,波束成形接收端就能使用这个通道矩阵,将射频能量运用在每位使用者身上。
多用户作业:MU-MIMO与OFDMA
80211ax标准采用了两种作业模式,分别是单一使用者与多使用者。在单一用户序列模式中,只要无线STA一取得媒体存取权,就会每次进行一个数据传送和接收作业。在多用户模式下,可同步进行多个非AP STA作业。标准会将此一模式进一步划分成下链和上链多使用者。
.下链多使用者是指由AP同时提供给多个相关无线STA的数据。现有的80211ac已具备这项功能。
.上链多使用者则涉及同时从多个STA传输数据至AP。这是80211ax标准的新功能,且不存在于任何旧版Wi-Fi标准中。
在多用户作业模式中,标准也会指定两种方式来为特定区域内更多用户进行多任务:多使用者MIMO(MU-MIMO)和正交频分多任务存取(OFDMA)。无论为上述何种方式,AP都会充当多用户作业内的中央控制器,这点与LTE基地台用来控制多使用者多任务的方式相似。此外,80211axAP也可将MU-MIMO和OFDMA作业结合在一起。
在MU-MIMO方面,80211ax装置会效法80211ac实作,使用波束成形技术将封包同步导向位于不同空间的使用者。换言之,AP将为每位用户计算通道矩阵,然后将同步波束导向不同用户,而每道波束都会包含适用于所属目标用户的特定封包。80211ax每次最多可传送8个多使用者MIMO传输,远高于80211ac的4个。此外,每个MU-MIMO传输都具备专属的MCS以及不同数量的空间串流。打个比方,使用MU-MIMO空间多任务时,AP的角色就等同于以太网络交换器,能减少自大型计算机网络至单一端口的网域冲突。
MU-MIMO上链导向提供了一项新功能:AP将透过触发讯框的方式启动来自每个STA的同步上链传输。当多使用者的响应与自身的封包一致时,AP就会将通道矩阵套用至已接收的波束,并区分每道上链波束包含的信息。另外,如图5所示,AP也能启动上链多使用者传输,以接收来自所有参与STA的波束成形反馈信息。
在MU-OFMDA部分,为了让相同通道带宽的更多用户进行多任务,80211ax标准采用了4G行动技术领域中的正交频分多任务存取(OFDMA)。80211ax标准以80211ac所用的正交频分多任务(OFDM)数字调变架构为基础,会将特定子载波集进一步指派给个别使用者。这表示它会使用数量已预先定义的子载波,将现有的80211通道(20、40、80和160MHz宽)画分成较小的子通道。此外,80211ax标准也仿效现代化的LTE专有名词,将最小的子信道称为「资源单位」(RU),而当中至少包含26个子载波。
AP会根据多使用者的流量需求来判断如何配置信道,持续指派下链中所有可用的RU。它可能会将整个信道一次配置给一名用户,如同现行的80211ac,也有可能将通道进行分配,以便同时服务多使用者(图6)。
在使用者密集环境中,许多使用者通常会透过成效不彰的方式争取使用通道的机会,现在,OFDMA机制会同时为多使用者提供较小(但专属)的子通道,进而改善每位用户平均传输率。图7说明了80211ax系统如何使用不同大小的RU进行通道多任务。请注意,最小的通道可在每20MHz的带宽中容纳多达9名使用者。
表2显示当80211ax AP和STA协调进行MU-OFDMA作业时,可享有分频多任务存取的使用者人数。
多用户上链作业
为了协调上链MU-MIMO或上链OFDMA传输,AP会将一个触发讯框传送给所有使用者。这个讯框会指出每位使用者的空间串流数量和/或OFDMA配置(频率和RU大小)。此外,当中也会包含功率控制信息,好让个别用户可以调高或调低其传输功率,进而平衡AP自所有上链使用者接收到的功率,同时改善较远节点的讯框接收情况。AP也会指示所有使用者何时可以开始和结束传输。如同图8所示,AP会传送多使用者上链触发讯框,告知所有使用者何时可以一起开始传输,以及所属讯框的持续时间,以确保彼此能够同时结束传输。一旦AP收到了所有使用者的讯框,就会回传区块ACK以结束作业。
80211ax的主要设计目标之一,就是在使用者密集的环境中提供4倍以上的单一使用者传输率。为了实现此一目标,这项标准的设计人员指定80211ax装置必须支持下链和上链MU-MIMO作业、MU-OFDMA作业,或是同时支持两者,以应对规模更大的同时用户数量。
80211ax MAC机制变更
为了改善密集部署情境中的系统层级性能以及频谱资源的使用效率,80211ax标准实作了空间重复使用技术。STA可以识别来自重迭基本服务组(BSS)的信号,并根据这项信息来做出媒体竞争和干扰管理决策。
当正在主动收听媒体的STA侦测到80211ax讯框时,它就会检查BSS色彩位(ColorBit)或MAC表头文件中的MAC地址。如果所侦测的协议数据单元(PPDU)中的BSS色彩与所关联AP已发表的色彩相同,STA就会将该讯框视为Intra-BSS讯框。
然而,如果所侦测讯框的BSS色彩不同,STA就会将该框架视为来自重迭BSS的Inter-BSS框架。在这之后,只有在需要STA验证框架是否来自Inter-BSS期间,STA才将媒体当成忙碌中(BUSY)。不过,这段期间不会超过指定的讯框酬载时间。
尽管标准仍需定义某些机制来忽略来自重迭BSS的流量,在实作上,则可包含提高Inter-BSS讯框的空闲信道评估信号侦测(SD)门坎值,并同时降低Intra-BSS流量的门坎(图9)。如此一来,来自邻近BSS 的流量就不会造成不必要的通道存取竞争。
当80211ax STA使用色码架构的CCA规则时,它们也允许搭配传输功率控制来一同调整OBSS信号侦测门坎。这项调整可望改善系统层级性能以及频谱资源的使用效率。除此之外,80211ax STA也可调整CCA参数,例如能量侦测层级和信号侦测层级。
除了使用CCA来判断目前通道是否为闲置或忙碌中,80211标准也采用了网络配置矢量(NAV),这个时间机制会保持未来流量的预测,以供STA指出紧接在目前讯框后的讯框需要多少时间。NAV可做为虚拟载波感测,用来为80211通讯协议作业至关重要的讯框确保媒体预约(例如控制框架以及RTS/CTS交换后的数据和ACK)。
负责开发高效率无线标准的80211工作团队可能会在80211ax标准中包含多个NAV字段,也就是采用两个不同的NAV。同时拥有Intra-BSSNAV和Inter-BSS NAV不仅可协助STA预测自身BSS内的流量,还能让它们在得知重迭流量状态时自由传输(图10)。
透过目标唤醒时间省电
80211axAP可以和参与其中的STA协调目标唤醒时间(TWT)功能的使用,以定义让个别基地台存取媒体的特定时间或一组时间。STA和AP会交换信息,而当中将包含预计的活动持续时间。如此一来,AP就可控制需要存取媒体的STA间的竞争和重迭情况。80211axSTA可以使用TWT来降低能量损耗,在自身的TWT来临之前进入睡眠状态。另外,AP还可另外设定排程并将TWT值提供给STA,这样一来,双方之间就不需要存在个别的TWT协议。本标准将此程序称为「广播TWT作业」(图11)。
80211ax带来六大测试挑战
由于导入许多先进射频技术与访问控制机制,80211ax系统的测试与设计验证将面临六大挑战,分别出现在误差矢量幅度(EMV)、频率错误、STA功率控制、存取点接收器灵敏度、上链带内散射与MIMO测试上。
更严格的EVM规定
现在80211ax会托管1024-QAM的相关支持。此外,子载波之间的间隔只有78125kHz。这意味着80211ax装置需要相位噪声性能更出色的振荡器,以及线性能力更优异的射频前端。而测量待测物(DUT)动作的测试仪器则会要求其EVM噪声水平应远低于DUT。
表3列出了80211ax兼容装置所应符合的EVM等级。
绝对与相对频率错误
OFDMA系统对频率和频率偏移有着极高的磁化率。因此,80211ax多使用者OFDMA性能需要极为密切的频率同步化和频率偏移修正。此要求将确保所有STA都能在所配置的子频道中运作,并将频谱泄漏的情况减至最低。此外,这项严格的时序需求也可确保所有STA都将同时进行传输,以响应AP的MU触发讯框。
以4G LTE系统来说,基站会利用GPS授时频率来同步所有相关装置。然而,80211ax AP不仅与这项优势无缘,还需要使用内建的振荡器充当维护系统同步化的参考依据。之后,STA会自AP的触发讯框撷取偏移信息,并据此调整内部的频率和频率参考。
80211ax装置的频率和频率偏移测试将涉及下列测试:
.绝对频率错误:DUT会传送80211ax讯框,而测试仪器则会使用标准参考来测量频率和频率偏移。结果将与目前80211ac规格的所述数据相似,限制约为±20ppm。
.相对频率错误:这将测试不属于AP的STA参与上链多用户传输以链接AP频率的能力。测试程序包含两个步骤。首先,测试仪器会将触发框架传送给DUT。
DUT将依照取自于触发讯框的频率和频率信息进行自适应。接着,DUT会使用已修正频率的框架做出回应,而测试仪器则会测量这些框架的频率错误。在载波频率偏移和时序补偿完成后,这些限制将密切维持在相对于AP触发讯框仅不到350 Hz和±04微秒的程度(图12)。
STA功率控制
与降低频率和频率错误需求一样,AP于上链多使用者传输期间接收的功率,不应出现多个使用者之间功率差异过大的情况。因此,AP必须控制每个独立STA的传输功率。AP可以使用触发讯框,并于当中包含各STA的传输功率信息。开发人员只需使用与频率错误测试相似的两步骤程序,即可完成这项功能的测试。
存取点接收器灵敏度
鉴于AP会充作频率和频率参考之用,测试80211ax AP的接收器灵敏度成为一大挑战。正因如此,测试仪器需要在传送封包至AP之前锁定AP,以利封包错误率灵敏度测试的进行。
在传送触发讯框以启动AP之后,测试仪器会配合AP调整自身的频率和频率,然后透过使用预期设定的封包(数量已预先定义)回应AP DUT。
80211ax采用的相对频率错误限制相当严格,这也正是难题所在。测试仪器需要自AP传送的触发讯框撷取极为精确的频率和频率信息。仪器可能需要针对多个触发框架执行这项计算,以确保频率和频率同步化顺畅无碍。因此,这项程序可能会大幅延误测试程序的进度。
若要加快测试程序的脚步,其中一个可行的解决方案便是让AP汇出其频率参考,好让测试设备能据此锁定自身频率。如此即可跳过根据触发讯框进行的初期同步化程序,并缩短AP接收器灵敏度测试的所需时间。
上链带内散射
在STA以MU-OFDMA模式运作期间,它们会使用由AP决定的RU配置来上传数据至AP。也就是说,STA只会使用通道的一部分。80211ax标准可能会指定上链带内散射测试,以描述和测量在传输器只使用部分频率配置期间所发生的散射(图13)。
多使用者和更高阶次的MIMO
若在MIMO作业中使用多达8个天线测试80211ax装置,其结果可能会与个别及连续测试每个信号链大不相同。举例来说,来自各个天线的信号可能会对彼此造成负面干扰,并影响到功率和EVM性能,进而对传输率带来负面且显着的影响。
测试仪器需要支持每个信号链的局部振荡器亚毫微秒同步化,以确保多个通道的相位微调和MIMO性能不会发生问题。
应对80211ax新挑战
80211ax可将密集环境的每位用户平均数据传输率提升4倍,而MU-MIMO和MU-OFDMA等形式在内的多使用者技术,则是促成此一效率的最大幕后功臣之一。针对人口密集环境做出的此一频谱使用改善,可望以前所未见的速度推广80211ax的采用。然而,此一功能的实作也会为负责实现上述工程奇迹的科学家、工程师和技术人员带来全新的挑战。HEW5A智能型互感器校验仪测电流怎么接线 求大神指教
产品概述
◆EDHG—III型中文大液晶智能型互感器校验仪,是一种新颖的自动化检测仪器,它运用先进的电子技术,对互感器的误差信号直接采极分解,并经适当运算后,将互感器的标定点、同相误差、正交误差同时数字量显示出来。仪器 *** 作简便,读数直观,测量迅速,能降低电能消耗,减轻劳动强度;体积小,重量轻,便于携带和现场测试;仪器能在5%定额工作电流(电压)下进行测试;如用户要求本厂也能生产检测S级电流互感器和二次电压为100/3V的电压互感器校验仪,此时仪器能在1%额定工作电流(电压)下测量互感器的误差;在检测过程中仪器能方便地随时进行自校,以监视仪器的精度;关键元器件使用进口组件,质量稳定可靠,广泛用于计量、供电等部门和互感器生产厂家,是开展互感器检测的理想仪器。
◆EDHG—III型中文大液晶智能型互感器校验仪,用于检定准确度级次001级至10级,额定二次电流为5A、1A和额定二次电压为100V、100/ V、150V(100/3V、220V)的电流互感器和电压互感器其测量结果直接数字显示,并可为用户配上RSC232接口,方便地与计算机相联。产品特点
◆在检定互感器时,仪器可以随时测量被检互感器次级回路的阻抗或导纳的有功分量和无功分量。
◆在检定互感器时,仪器能自动指示极性。当极性错误时,仪器能自动切断差流(差压)回路,确保仪器输入电路安全。并发出声光报警,提示检定人员注意。
◆仪器可以作为直角坐标系交流电位计使用,测量交流小电流或交流小电压。
◆仪器可以与隔离PT及 *** 作箱一起测量电压互感器的二次压降。
◆在检定互感器时,仪器可以用标准电流互感器或标准电压互感器作标准,也可以用双级电流互感器,双级电压互感器或感应分压器作比例标准。
◆仪器可以用整体法或元件法进行周期检定。
◆显示方法:320×240中文大液晶屏
◆存储功能:PT、CT数据各40组,能对CT的1%点的误差数据进行存储;
◆联机功能:可以和计算机及相应软件联机;
◆打印功能:实时查询打印;在 Wi-Fi 6 发布之前,按照IEEE(电机电子工程师学会)的命名规范,Wi-Fi协议版本一直采用的是"80211" + 英文字母 这样的命名格式,为了让使用者更易于辨识,Wi-Fi联盟重新命名了Wi-Fi协议。以80211ax为例,将其称呼简化为Wi-Fi 6,更便于用户记忆。
Wi-Fi 6的特色与先前的 Wi-Fi 技术相比,提供了更好、更高效和更快的数据传输。与前一代80211ac(Wi-Fi 5) 不同,80211ax(Wi-Fi 6)不仅适用于 Wi-Fi 5GHz 频段,还适用于Wi-Fi 24GHz频段,可在现有频段上实现更佳的效能与体验。地铁跑酷兑换码2023年2月4 地铁跑酷兑换码2023年2月
时间:2023-02-08 10:41:47 来源:APP178手游网
地铁跑酷兑换码2023年2月大礼包,是礼包码整理的最新一期奖励,小编今天继续给大家分享最新的兑换码,大家一起来看看吧。

地铁跑酷兑换码2023年2月大礼包
BI1YKB1KRZHNI09J
9KFRL1WQQUHA2
FLABFHJHEWWI
PT22XPTA
DK两种奖励都是官方集合,让你们能够轻松的拿到礼包里面的奖励哦。
礼包包括:金币3000、5级防具箱2、能量晶尘2000
安卓
一、打开设置——-服务器→d出游戏→点开头像个方向——设置界面——设置界面——兑换码页面——输入兑换码,点击兑换即可成功。
二、礼包码使用失败/失效:
1大家要注意复制粘贴礼包码的时候是否存在空格或者隐藏符号,如果有以上情况大家只要一一删除,并且在复制的时候要注意是否有隐藏符号。
2小编分享的礼包码是带有时间限制的,大家要及时兑换避免礼包码失效。
3礼包码经常会有天数限制,到时候会出现单数输出限时礼包码,大家最好要手速一点,不然礼包码就会失效无法使用。
地铁跑酷兑换码2023年2月4
地铁跑酷兑换码2023年2月4日是多少,很多玩家都被这个惊险时效事件坑了,那么就是这个事件的主要内容,感兴趣和小编一起看过的地铁跑酷福利吧。
地铁跑酷兑换码2023年2月4日
先去邮箱补充问题
目前游戏还没公布兑换码的情况,玩家也可以把英文当中的一个“叫法”,这样就能自然找到礼包码了,直接在游戏框里面输入兑换码,不然反而找不到奖励了,最后一步是需要进入游戏邮箱当中领取奖励,不然领取了也是白搭个坑了。
兑换码领取方法
进入游戏,点击个人后面的“头像”,然后在里面看到“兑换码”,然后把你领取到的兑换码输入进去,注意要区分好大小写。
最后一步就是兑换区里,把兑换码写出去了再去点击领取就好了,这样就可以拿到奖励了。
兑换码一共有十个可以使用
vip1111
vip2222
vip3333
vip6666
vip8888
aw666
fuli6666
fuli123
fuli888
fuli999
注意重复领取,一个账号一次,不能重复花时间去兑换,不然过了时间也无法继续使用。
12 个空间流与 256-QAM 调制。
2 2 个空间流与 256-QAM 调制。
3 3 个空间流与 64-QAM 调制。
Wi-Fi 已成为当今世界无处不在的技术,为数十亿设备提供连接,也是越来越多的用户上网接入的首选方式,并且有逐步取代有线接入的趋势。为适应新的业务应用和减小与有线网络带宽的差距,每一代 80211 的标准都在大幅度的提升其速率。
1997 年 IEEE 制定出第一个无线局域网标准 80211,数据传输速率仅有 2Mbps,但这个标准的诞生改变了用户的接入方式,使人们从线缆的束缚中解脱出来。
随着人们对网络传输速率的要求不断提升,在 1999 年 IEEE 发布了 80211b 标准。80211b 运行在 24 GHz 频段,传输速率为 11Mbit/s,是原始标准的 5 倍。同年,IEEE 又补充发布了 80211a 标准,采用了与原始标准相同的核心协议,工作频率为 5GHz,最大原始数据传输率 54Mbit/s,达到了现实网络中等吞吐量(20Mbit/s)的要求,由于 24GHz 频段已经被到处使用,采用 5GHz 频段让 80211a 具有更少冲突的优点。
2003 年,作为 80211a 标准的 OFDM 技术也被改编为在 24 GHz 频段运行,从而产生了 80211g,其载波的频率为 24GHz(跟 80211b 相同),原始传送速度为 54Mbit/s, 净传输速度约为 247Mbit/s(跟 80211a 相同)。
对 Wi-Fi 影响比较重要的标准是 2009 年发布的 80211n,这个标准对 Wi-Fi 的传输和接入进行了重大改进,引入了 MIMO、安全加密等新概念和基于 MIMO 的一些高级功能 (如波束成形,空间复用),传输速度达到 600Mbit/s。 此外,80211n 也是第一个同时工作在 24 GHz 和 5 GHz 频段的Wi-Fi 技术。
然而,移动业务的快速发展和高密度接入对 Wi-Fi 网络的带宽提出了更高的要求,在2013 年发布的 80211ac 标准引入了更宽的射频带宽(提升至 160MHz)和更高阶的调制技术(256-QAM),传输速度高达 173Gbps,进一步提升 Wi-Fi 网络吞吐量。另外,在 2015 年发布了 80211ac wave2 标准,将波束成形和 MU-MIMO 等功能推向主流,提升 了系统接入容量。但遗憾的是 80211ac 仅支持 5GHz 频段的终端,削弱了 24GHz 频段下的用户体验。
然而,随着视频会议、无线互动 VR、移动教学等业务应用越来越丰富,Wi-Fi 接入终端越来越多,IoT 的发展更是带来了更多的移动终端接入无线网络,甚至以前接入终端较少的家庭 Wi-Fi 网络也将随着越来越多的智能家居设备的接入而变得拥挤。因此 Wi-Fi 网络仍需要不断提升速度,同时还需要考虑是否能接入更多的终端,适应不断扩大的客户端设备数量以及不同应用的用户体验需求。
下一代Wi-Fi 需要解决更多终端的接入导致整个Wi-Fi 网络效率降低的问题,早在2014 年 IEEE 80211 工作组就已经开始着手应对这一挑战, 预计在 2019 年正式推出的80211ax(下个章节介绍为什么叫 Wi-Fi 6)标准将引入上行 MU-MIMO、OFDMA 频分复用、1024-QAM 高阶编码等技术,将从频谱资源利用、多用户接入等方面解决网络容量和传输效率问题。目标是在密集用户环境中将用户的平均吞吐量相比如今的 Wi-Fi 5 提高至少4 倍,并发用户数提升 3 倍以上,因此,Wi-Fi 6(80211ax)也被称为高效无线(HEW)。
Wi-Fi 6 是下一代 80211ax 标准的简称。随着 Wi-Fi 标准的演进,WFA 为了便于 Wi- Fi 用户和设备厂商轻松了解其设备连接或支持的 Wi-Fi 型号,选择使用数字序号来对 Wi- Fi 重新命名。另一方面,选择新一代命名方法也是为了更好地突出 Wi-Fi 技术的重大进步, 它提供了大量新功能,包括增加的吞吐量和更快的速度、支持更多的并发连接等。根据 WFA 的公告,现在的 Wi-Fi 命名分别对应如下 80211 技术标准:
和以往每次发布新的 80211 标准一样,80211ax 也将兼容之前的 80211ac/n/g/a/b 标准,老的终端一样可以无缝接入 80211ax 网络。
4G 是移动网络高速率的代名词,同样,Wi-Fi 6 是无线局域网高速率的代名词,但这个高速率是怎么来的,由以下几个因素决定。
1空间流数量 空间流其实就是 AP 的天线,天线数越多,整机吞吐量也越大,就像高速公路的车道一样,8 车道一定会比 4 车道运输量更大。
表 2 不同 80211 标准对应的空间流数量 2Symbol 与 GI Symbol 就是时域上的传输信号,相邻的两个Symbol 之间需要有一定的空隙(GI),以避免 Symbol 之间的干扰。就像中国的高铁一样,每列车相当于一个 Symbol, 同一个车站发出的两列车之间一定要有一个时间间隙,否则两列车就可能会发生碰撞。不同 Wi-Fi 标准下的间隙也有不同,一般来说传输速度较快时 GI 需要适当增大,就像同一车道上两列 350KM/h 时速的高铁发车时间间隙要比时速 250KM/h 时速的高铁发车间隙要大一些。
表 3 80211 标准对应的 Symbol 与GI 数据
3编码方式 编码方式就是调制技术,即 1 个 Symbol 里面能承载的 bit 数量。从 Wi-Fi 1 到 Wi-Fi 6,每次调制技术的提升,都能至少给每条空间流速率带来 20%以上的提升。
表 4 80211 标准对应的 QAM 4码率 理论上应该是按照编码方式无损传输,但现实没有这么美好。传输时需要加入一些用于纠错的信息码,用冗余换取高可靠度。码率就是排除纠错码之后实际真实传输的数据码占理论值的比例。
表 5 80211 标准对应的码率 5有效子载波数量 载波类似于频域上的 Symbol,一个子载波承载一个 Symbol,不同调制方式及不同频宽下的子载波数量不一样。
表680211 标准对应的子载波数量
至此,我们可以计算一下 80211ac 与 80211ax 在 HT80 频宽下的单条空间流最大速率:
Wi-Fi 6(80211ax)继承了Wi-Fi 5(80211ac)的所有先进 MIMO 特性,并新增了许多针对高密部署场景的新特性。以下是Wi-Fi 6 的核心新特性:
下面详细描述这些核心新特性。
图 2-1 OFDM 工作模式 80211ax 中引入了一种更高效的数据传输模式,叫 OFDMA(因为 80211ax 支持上下行多用户模式,因此也可称为 MU-OFDMA),它通过将子载波分配给不同用户并在OFDM 系统中添加多址的方法来实现多用户复用信道资源。迄今为止,它已被许多无线技术采用,例如 3GPP LTE。此外,80211ax 标准也仿效 LTE,将最小的子信道称为“资源单位(Resource Unit,简称 RU)”,每个 RU 当中至少包含 26 个子载波,用户是根据时频资源块 RU 区分出来的。我们首先将整个信道的资源分成一个个小的固定大小的时频资源块 RU。在该模式下,用户的数据是承载在每一个 RU 上的,故从总的时频资源上来看,每一个时间片上,有可能有多个用户同时发送(如下图)。
图 2-2 OFDMA 工作模式 OFDMA 相比 OFDM 一般有三点好处:
图 2-3 不同子载波频域上的信道质量
因为 80211ac 及之前的标准都是占据整个信道传输数据的,如果有一个 QOS 数据包需要发送,其一定要等之前的发送者释放完整个信道才行,所以会存在较长的时延。在OFDMA 模式下,由于一个发送者只占据整个信道的部分资源,一次可以发送多个用户的数据,所以能够减少 QOS 节点接入的时延。
表 7不同频宽下的 RU 数量
图 2-4RU 在 20MHz 中的位置示意图 RU 数量越多,发送小包报文时多用户处理效率越高,吞吐量也越高,下图是仿真收益:
图 2-5 OFDMA 与 OFDM 模式下多用户吞吐量仿真
图 2-6 SU-MIMO 与 MU-MIMO 吞吐量差异
图 2-7 8x8 MU-MIMO AP 下行多用户模式调度顺序
图 2-8 多用户模式上行调度顺序 虽然 80211ax 标准允许OFDMA 与 MU-MIMO 同时使用,但不要 OFDMA 与 MU- MIMO 混淆。OFDMA 支持多用户通过细分信道(子信道)来提高并发效率,MU-MIMO 支持多用户通过使用不同的空间流来提高吞吐量。下表是 OFDMA 与 MU-MIMO 的对比:
表 8 OFDMA 与 MU-MIMO 对比
图 2-9 256-QAM 与 1024-QAM 的星座图对比 需要注意的是 80211ax 中成功使用 1024-QAM 调制取决于信道条件,更密的星座点距离需要更强大的 EVM(误差矢量幅度,用于量化无线电接收器或发射器在调制精度方面的性能)和接受灵敏度功能,并且信道质量要求高于其他调制类型。
图 2-10 80211 默认 CCA 门限
例如图 12,AP1 上的 STA1 正在传输数据,此时,AP2 也想向 STA2 发送数据,根据Wi-Fi 射频传输原理,需要先侦听信道是否空闲,CCA 门限值默认-82dBm,发现信道已被STA1 占用,那么 AP2 由于无法并行传输而推迟发送。实际上,所有的与 AP2 相关联的同信道客户端都将推迟发送。引入动态 CCA 门限调整机制,当 AP2 侦听到同频信道被占用时,可根据干扰强度调整 CCA 门限侦听范围(比如说从-82dBm 提升到-72dBm),规避干扰带来的影响,即可实现同频并发传输。
图 2-11 动态 CCA 门限调整 由于 Wi-Fi 客户端设备的移动性,Wi-Fi 网络中侦听到的同频干扰不是静态的,它会随着客户端设备的移动而改变,因此引入动态 CCA 机制是很有效的。80211ax 中引入了一种新的同频传输识别机制,叫 BSS Coloring 着色机制,在 PHY 报文头中添加 BSS color 字段对来自不同BSS 的数据进行“染色”,为每个通道分配一种颜色,该颜色标识一组不应干扰的基本服务集(BSS),接收端可以及早识别同频传输干扰信号并停止接收,避免浪费收发机时间。如果颜色相同,则认为是同一 BSS 内的干扰信号, 发送将推迟;如果颜色不同,则认为两者之间无干扰,两个 Wi-Fi 设备可同信道同频并行传输。以这种方式设计的网络,那些具有相同颜色的信道彼此相距很远,此时我们再利用动态CCA 机制将这种信号设置为不敏感,事实上它们之间也不太可能会相互干扰。
图 2-12 无BSS Color 机制与有BSS Color 机制对比
图 2-13 Long OFDM symbol 与窄带传输带来覆盖距离提升
前面的几大核心技术已经足够证明 80211ax 带来的高效传输和高密容量,但80211ax 也不是 Wi-Fi 的最终标准,这只是高效无线网络的开始,新标准的 80211ax 依然需要兼容老标准的设备,并考虑面向未来物联网络、绿色节能等方向的发展趋势。以下是 80211ax 标准的其他新特性:
下面详细描述这些新特性。
我们都知道 24GHz 频宽窄,且仅有 3 个 20MHz 的互不干扰信道(1,6 和 11),在 80211ac 标准中已经被抛弃,但是有一点不可否认的是 24GHz 仍然是一个可用的 Wi-Fi 频段,在很多场景下依然被广泛使用,因此,80211ax 标准中选择继续支持 24GHz,目的就是要充分利用这一频段特有的优势。
无线通信系统中,频率较高的信号比频率较低的信号更容易穿透障碍物,而频率越低, 波长越长,绕射能力越强,穿透能力越差,信号损失衰减越小,传输距离越远。虽然 5GHz 频段可带来更高的传播速度,但信号衰减也越大,所以传输距离比 24GHz 要短。因此,我们在部署高密无线网络时,24GHz 频段除了用于兼容老旧设备,还有一个很大的作用就是边缘区域覆盖补盲。
现阶段仍有数以亿计的 24GHz 设备在线使用,就算如今成为潮流的 IoT 网络设备也使用的 24GHz 频段,对有些流量不大的业务场景(如电子围栏、资产管理等),终端设备非常多,使用成本更低的仅支持 24GHz 的终端是一个性价比非常高的选择。
图 2-14 广播目标唤醒时间 *** 作
为什么要 Wi-Fi 6(80211ax)
80211ax 设计之初就是为了适用于高密度无线接入和高容量无线业务,比如室外大型公共场所、高密场馆、室内高密无线办公、电子教室等场景。
图 3-1 高密高带宽应用场景 在这些场景中,接入Wi-Fi 网络的客户端设备将呈现巨大增长,另外,还在不断增加的语音及视频流量也对 Wi-Fi 网络带来调整,根据预测,到 2020 年全球移动视频流量将占移动数据流量的 50%以上,其中有 80%以上的移动流量将会通过 Wi-Fi 承载。我们都知道 4K 视频流(带宽要求 30Mbps/人)、语音流(时延小于 30ms)、VR 流(带宽要求 50Mbps/人,时延 10~20ms)对带宽和时延是十分敏感的,如果网络拥塞或重传导致传输延时,将对用户体验带来较大影响。而现有的Wi-Fi 5(80211ac)网络虽然也能提供大带宽能力,但是随着接入密度的不断上升,吞吐量性能遇到瓶颈。而Wi-Fi 6 (80211ax)网络通过 OFDMA、UL MU-MIMO、1024-QAM 等技术使这些服务比以前更可靠,不但支持接入更多的客户端,同时还能均衡每用户带宽。比如说电子教室,以前如果是 100 多位学生的大课授课形式,传输视频或是上下行的交互挑战都比较大,而80211ax 网络将轻松应对该场景。
5G 与 Wi-Fi 6(80211ax)的共存关系
这不是一个新颖的话题,在 1999 年~2000 年间,就有人提出 2G 将替代 Wi-Fi 的观点;2008 年~2009 年也出现了 4G 将代替 Wi-Fi 的猜测;现在又有人开始讨论 5G 代替 Wi- Fi 的话题了。可是,5G 与 Wi-Fi 的应用场景模式是不相同的。Wi-Fi 主要用于室内环境, 而 5G 则是一种广域网技术,它在室外的应用场景更多。所以我们相信 Wi-Fi 和 5G 将长期共存下去。我们从以下几个角度进一步分析:
假设 5G 技术取代 Wi-Fi,那么就必须推出无限流量的套餐,否则费用会远远大于宽带的使用的费用,更何况目前宽带的价格一年比一年低,谁也不会去选择更贵的 5G。在目前的 4G 时代无限流量的套餐就是个噱头,三大运营商都纷纷推出过无限流量的套餐,当时流量超出套餐的流量之后,网络会自动将为 2G 模式,最高速度只有 128Kbps,这个速度看视频不如看漫画,因此所谓的无限流量只是个无稽之谈。
5G 网络技术采用的是超高频频谱(5G 网络频段: 24GHz~52GHz;4G 网络频段:18GHz~26GHz,不包括 24GHz),前面已经提到,频率越高衍射现象越弱,穿越障碍的 能力也就越弱,所以 5G 信号是很容易衰弱的。如果保持 5G 信号的覆盖需要比 4G 建设更多的基站。而且由于信号的衰减,如果在大楼的内部,隔着几道墙,信号衰减就更加严重了。 再有个极端的例子就是地下室,Wi-Fi 网络可以将路由器通过有线连接放入地下室产生信号, 但是 5G 网络是不可能覆盖到所有大楼的地下室的,单就这一个弊端,5G 也无法取代 Wi- Fi。另外,现在几乎所有智能设备都有 Wi-Fi 模块,大多数物联网设备也配备了 Wi-Fi 模块, 出口只用一个公网 IP 地址,局域网内部占用大量地址也没关系,用户在自己的 Wi-Fi 网络下管理这些设备都很方便,而用 5G 势必会占用更多公网的 IP 地址。
带宽 x 频谱效率 x 终端数量 = 总容量。
5G 的优点在于它的载波聚合技术,提升了频谱利用率,大大提升了网络容量。在 3G/4G 时代,当用户在人群密集的场所如地铁、车站等地方使用手机上网时,可以明显感觉到上网延迟变大,网速变慢。而在 5G 时代,随着网络容量大幅提升上述现象带来的影响明显降低。也正是这样的特性,让人们觉得 5G 网络下可以无限量接入,但很多人忽视了一点,那就是随着物联网时代的到来,入网设备的数量也在大幅提升,如果真的所有的上网设备都直连区域内的基站,这条 5G 高速路再宽也得堵死啊!而要想降低基站塔的负担,就必须依靠Wi-Fi 来做分流。
移动设备厂商宣传的 5G 最重要的 3 个特征是高速度、大容量、低时延,其实最新一代的 Wi-Fi 速率比 5G 还要快,最新的 80211ax(Wi-Fi 6)单流峰值速率 12Gbps(5G 网络峰值速率 1Gbps),平均来看,Wi-Fi 每升级一代所用的时间大约只是移动网络的一半左右,所以从最新的Wi-Fi 6 开始,速率会持续领先于移动网络。
办公、物流、商业、智能家居等各行各业都在走向无线化,首先要做的就是把设备、人员、终端等全部联网使用。假设 5G 替代了 Wi-Fi 的存在,那么未来的所有联网终端都需要配备一张类似手机 SIM 卡的东西才可以上网。这一个理由也注定了目前在室内场景 5G 是不可能取代Wi-Fi 的。类似的设备还有 VR、游戏机、电子阅读器、机顶盒等等……
大家都知道手机、pad 等移动终端都是用的电池,大家通常都认为电池的耐用性与安装的业务,和使用频率有关,但人们往往忽略了一点,终端的各种移动信号接入质量好与差也 与电池耗电量有关。当信号变差时,移动终端为了确保给用户提供一个良好的体验,会自动增加发射功率来提升信号质量,这就导致电池耗电量增加。由于 Wi-Fi 的信号源基本是在室内范围,而 5G 信号在室外几十公里外的基站,这样就导致移动终端上传数据时,Wi-Fi 的传送距离远远小于 5G 信号。通常情况下 5G 的通信距离是 Wi-Fi 的几千倍以上,这样就需要手机的信号发射强度大大增加,这就增加了耗电量。曾经有人做过实验,以 4G 为例,使用网络数据半小时,Wi-Fi 会比移动网络节省 5%的电量。另外,最新一代的 Wi-Fi 6 (80211ax)支持 TWT 功能,可以在业务需要时自动唤醒,在业务不适用时自动休眠,进一步节省了电量。
因此,目前所面临的这些问题使得 5G 还无法彻底取代 Wi-Fi,更多的是与 Wi-Fi 进行深度融合,因此使用 Wi-Fi 的企业和用户并不用过于慌张。今天的 Wi-Fi 已不再是一个提供无线网络的设备,更多的应该被视为企业数字化转型的必备设施或中央枢纽。例如目前绝大部分的智慧零售、智慧物流、智慧办公等解决方案的中央枢纽就是 Wi-Fi 网络。
参考:
关于WiFi 6技术,这篇说得最详细
不同的 Wi-Fi 协议和数据速率
HZ (物理单位
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)