怎么样成为一个算法工程师?

怎么样成为一个算法工程师?,第1张

看看招聘算法工程师的要求大概能知道一些情况:华为:无线RTT(无线传输技术)算法工程师主要工作职责1.根据各无线产品(包括WCDMA(含HSPA)/CDMA2000/Wimax/GSM(EDGE)需求,分析和设计基带算法及其性能。2.参与无线产品系统测试,外场测试,定位并分析问题。3.参与LTE(S3G)/AIE/E-HSPA/GERAN标准演进的物理层技术提案工作。4.与各无线产品RRM算法人员,网规人员合作,共同完成跨领域的算法分析研究和系统性能分析工作。职位要求:(一)通信知识1.硕士及以上学历,通信、信号处理或相关专业毕业(很优秀或有丰富算法分析经验可以放宽到本科)。2.掌握信号处理技术,随机系统理论和信号检测理论,通信原理等技术。3.熟悉无线通信系统原理,特别是蜂窝无线通信系统。4.了解无线资源管理的基本知识,如切换,功控等。5.了解无线网络规划的技术,特别是容量,覆盖相关的知识。(二)个人素质1.对算法研究有浓厚兴趣和求知欲望,有意在这里长期发展。2.有良好的领悟能力,对工作精益求精的精神,强烈的责任心。3.有良好的团队意识和合作精神。(三)其他要求和说明1.有在国内外公司相关核心部门工作经历和成功经验的人优先考虑。某搜索网站:职位名称:资深搜索算法工程师职位描述:1 针对公司搜索业务,开发搜索相关性算法、排序算法。2 对公司海量用户行为数据和用户意图,设计数据挖掘算法 。3 进行关联推荐、个性化搜索技术的研发。公司简介:公司成立于2003年,拥有注册会员17亿;2009年全年交易额达到2083亿人民币,是亚洲最大的网络零售商圈。网站占据国内电子商务80%以上的市场份额。公司子平台作为一站式购物搜索引擎,自上线以来,已经成为这个领域内的领军力量,它最终将会为消费者提供从商品搜索、购物比价甚至在线支付的全流程购物服务。公司采用行业领先的搜索技术,网罗最受欢迎的C2C、B2C以及团购网站的所有线上商品,同时将各类导购资讯一网打尽,为用户提供便捷的一站式购物体验;货比N家,。公司有着千万台服务器24x7的积累和计算海量的用户购物行为以及商品销售数据,为消费者提供可持续提升体验的个性化商品推荐;创新的手机应用让购物随时随地。 欢迎对网络购物体验,搜索技术,大数据量并行处理,分布式存储与计算,大规模集群通讯,自然语言处理, 机器学习,商品推荐算法, Android/iOS移动应用开发等感兴趣的朋友加入。岗位职责:1、3年以上相关工作经验。 2、熟练掌握C/C++或java语言。 5、深入理解机器学习理论,了解自然语言处理技术者优先考虑

看看招聘算法工程师的要求大概能知道一些情况:
华为:无线RTT(无线传输技术)算法工程师
主要工作职责
1.根据各无线产品(包括WCDMA(含HSPA)/CDMA2000/Wimax/GSM(EDGE)需求,分析和设计基带算法及其性能。
2.参与无线产品系统测试,外场测试,定位并分析问题。
3.参与LTE(S3G)/AIE/E-HSPA/GERAN标准演进的物理层技术提案工作。
4.与各无线产品RRM算法人员,网规人员合作,共同完成跨领域的算法分析研究和系统性能分析工作。
职位要求:(一)通信知识
1.硕士及以上学历,通信、信号处理或相关专业毕业(很优秀或有丰富算法分析经验可以放宽到本科)。
2.掌握信号处理技术,随机系统理论和信号检测理论,通信原理等技术。
3.熟悉无线通信系统原理,特别是蜂窝无线通信系统。
4.了解无线资源管理的基本知识,如切换,功控等。
5.了解无线网络规划的技术,特别是容量,覆盖相关的知识。
(二)个人素质
1.对算法研究有浓厚兴趣和求知欲望,有意在这里长期发展。
2.有良好的领悟能力,对工作精益求精的精神,强烈的责任心。
3.有良好的团队意识和合作精神。
(三)其他要求和说明
1.有在国内外公司相关核心部门工作经历和成功经验的人优先考虑。
某搜索网站:职位名称:资深搜索算法工程师
职位描述:1 针对公司搜索业务,开发搜索相关性算法、排序算法。
2 对公司海量用户行为数据和用户意图,设计数据挖掘算法 。
3 进行关联推荐、个性化搜索技术的研发。公司简介:公司成立于2003年,拥有注册会员17亿;2009年全年交易额达到2083亿人民币,是亚洲最大的网络零售商圈。网站占据国内电子商务80%以上的市场份额。公司子平台作为一站式购物搜索引擎,自上线以来,已经成为这个领域内的领军力量,它最终将会为消费者提供从商品搜索、购物比价甚至在线支付的全流程购物服务。公司采用行业领先的搜索技术,网罗最受欢迎的C2C、B2C以及团购网站的所有线上商品,同时将各类导购资讯一网打尽,为用户提供便捷的一站式购物体验;货比N家,。公司有着千万台服务器24x7的积累和计算海量的用户购物行为以及商品销售数据,为消费者提供可持续提升体验的个性化商品推荐;创新的手机应用让购物随时随地。 欢迎对网络购物体验,搜索技术,大数据量并行处理,分布式存储与计算,大规模集群通讯,自然语言处理, 机器学习,商品推荐算法, Android/iOS移动应用开发等感兴趣的朋友加入。岗位职责:1、3年以上相关工作经验。 2、熟练掌握C/C++或java语言。 3、了解Unix/Linux环境下开发环境、熟练应用Perl和Unix Shell等其中一种语言; 4、熟悉信息检索理论,了解常用的数据挖掘技术。 5、深入理解机器学习理论,了解自然语言处理技术者优先考虑

SIM卡(Subscriber Identity Module) ,即用户识别卡,是全球通数字移动电话的一张个人资料卡。它采用A 级加密方法制作,存储着用户的数据、鉴权方法及密钥,可供GSM系统对用户身份进行鉴别。同时,用户通过它完成与系统的连接和信息的交换。
移动电话只有装上SIM卡才能使用。“SIM卡”有大小之分,功能完全相同,分别适用于不同类型的GSM移动电话。SIM卡可以插入任何一部符合GSM规范的移动电话中,而通话费则自动计入持卡用户的帐单上,与移动电话无关。
SIM卡的使用,有效的防止了盗用、并机和通话被窃听,使用户的正常通信得到了可靠的保障。
为了保证您的移动电话丢失后不被盗用,每张SIM卡都可设置一组个人密码(PIN码)来对SIM卡上锁,它是由用户自己设定的。只有正确输入密码后,手机才会进入正常的使用状态。连续三次输入错误的个人密码,手机即会将SIM卡锁住。发生这种情况,请您立即关机并携机及SIM卡到无线局营业厅解锁。如果此时您还继续 *** 作,将引起SIM卡的自动封毁,给您造成不必要的损失。
USIM卡就是第三代手机卡
USIM: Universal Subscriber Identity Module(全球用户识别卡)
全球用户身份模块(USIM),也叫做升级 SIM ,是在 UMTS 3G 网络的一个构件。
很多人认为在3G时代,绝大部分应用只能由手机实现,卡片上的有限资源只需实现认证功能就可以了。的确,3G的应用十分复杂,大部分的应用都不能通过STK卡来单独完成。但USIM卡并不是只能做单纯的认证功能,事实证明它正在逐步向移动商务平台、乃至最后的多应用平台过渡,在手机上实现电子钱包、电子xyk、电子票据等其它应用已不再是难事。这一特点使USIM卡成为了不同行业跨领域合作、相互渗透经营的媒介,如银行可以参与电信的经营,反之亦然。
除能够支持多应用之外,USIM卡还在安全性方面对算法进行了升级,并增加了卡对网络的认证功能,这种双向认证可以有效防止黑客对卡片的攻击。同时,USIM卡的电话簿功能更为强大,最多可存入500个电话号码,并且针对每个电话,用户还可以选择是否录入其它信息,如电子邮件、别名、其它号码等。
尽管步履蹒跚,但3G还是向我们一步步走来。高额的3G牌照费用也许是许多运营商徘徊不前的原因之一,更重要的是它们对3G应用持以观望的态度。而且实现基于USIM卡上的多应用还有很多问题亟待解决,如相关的规范不够完善,缺乏支持这种多应用的手机,更重要的是运营商和相关的企业或政府机构的多方协调会加大这种应用的难度。无论怎样,第三代移动通信卡片在这方面已经做好了技术准备,相信基于USIM卡的多应用也终会在3G时代得到广泛使用。
TD-SCDMA的USIM卡在非TD-SCDMA手机上的使用问题,我们经过测试,在其它3G手机上,如WCDMA的机型,USIM卡可以作为一张普通的SIM卡使用,进行GSM网络的通话和信息功能,而在非2G手机上,则显示“SIM卡”注册失败。可见USIM卡本身就是一张TD-SCDMA和GSM 的双模卡(在USIM卡卡身上亦有说明),但是只能使用在3G手机如K850i、E51或有“3G版本”存在的行货手机如N73、N95上。

WCDMA和GSM之间的国际漫游分析
摘要文章介绍了GSM和WCDMA系统中不同制式的终端和不同类型用户标识模块(SIM、USIM、ISIM)之间的兼容关系。主要讨论了WCDMA和GSM系统之间实现国际漫游的两种不同 *** 作模式,分析了不同模式下具体的呼叫信令流程和不同的加密方式。
关键词2G/3G互 *** 作 WCDMA GSM 国际漫游 鉴权加密
1 引言
我们知道GSM和WCDMA都是基于GSM-MAP核心网,GSM网络可以平滑演进到WCDMA系统。目前欧洲、亚洲、非洲有很多国家已经建立WCDMA系统。所谓的WCDMA和GSM之间的国际漫游是指GSM(或者WCDMA)用户漫游到国外的WCDMA(GSM)网络,利用拜访地WCDMA(GSM)网络来为其提供业务服务。
由于各个国家发展的情况存在一定的差异,例如有的国家只存在GSM网络(比如中国),而有的国家则只建设了WCDMA网络(例如日本),而没有GSM网络。为此3GPP TS 22100规范指出,WCDMA终端应该可以支持通过GSM的SIM卡来访问WCDMA网络。当然此时WCDMA网络只能为用户所提供象GSM系统所能提供的那些业务(WCDMA的特有业务,例如视频、高速数据通信无法提供)。用户是否可以通过GSM的SIM卡来访问WCDMA网络由该WCDMA网络运营商控制。同时3GPP TS 22101规范指出UMTS(Universal Mobile Telecommunications System)系统应该允许WCDMA用户通过GSM终端来访问GSM网。下面我们就这个问题来分析一下要在这两个系统之间实现国际漫游需要什么条件以及一些关键流程。
2 移动终端中的UICC卡
我们知道在3GPP终端设计中一个重要的环节就是通用集成电路卡(UICC,Universal Integrated Circuit Card)的设计。UICC卡是一种可移动智能卡,它用于存储用户信息、鉴权密钥、电话簿、短消息等信息。
在GSM和3GPP规范中,用户想正常的使用各种业务都必须依靠终端中的UICC卡。如果终端中没有UICC卡,那么用户只能使用紧急呼叫业务(例如110、119)。
用户只需要将UICC卡从一部终端取出并插入到另一部终端中便可以轻松的将用户的签约信息(包括电话簿)从一部终端转移到另一部终端中。
UICC是定义了物理特性的智能卡的总称,UICC和终端的接口都是标准的。
UICC可以包括多种逻辑应用,例如用户标识模块(SIM,Subscriber Identity Module)、通用用户标识模块(USIM,Universal Subscriber Identity Module)、IP多媒体业务标识模块(ISIM,IP Multimedia Service Identity Module)。当然UICC还可以包括其它应用(电子钱包等)。
21 GSM中的SIM
SIM卡是GSM网络中移动终端所使用的智能卡,它用于存储各种参数和相关用户信息,例如用户签约信息、鉴权密钥、用户的优选信息、以及短信息。应当注意的是尽管我们经常会把UICC和SIM这两个术语互换,其实UICC是指物理卡,而SIM是指UICC卡上存储GSM用户签约信息的一个应用。SIM广泛应用于GSM系统中。
SIM中包括下列信息:
◆国际移动用户标识(IMSI,International Mobile Subscriber Identity):用户身份标识,用于接入鉴权。
◆移动用户ISDN号码(MSISDN,Mobile Subscriber ISDN Number):移动用户的手机号码。
◆密钥Ki、加密算法A3、A8:用于鉴权。
◆移动国家码(MCC,Mobile Country Code)、归属PLMN的移动网络码(MNC,Mobile Network Code):网络标识。
SIM应用在GSM的早期阶段就已经进行了标准化。在3GPP中继续继承了这些规范(参阅3GPP TS 1111和3GPP TS 51011)。
22 WCDMA中的USIM
USIM(参阅3GPP TS 31102)是UICC卡上的另外一种应用。USIM提供了不同于SIM的另外一组参数,它包括用户签约信息、鉴权信息、付费方式、用户短消息等。USIM用于通用移动通信系统(UMTS,Universal Mobile Telecommunication System)网络中,即WCDMA网络中。
当终端(包括电路交换功能和分组交换功能)要使用WCDMA业务时,必须使用USIM。很明显,SIM和USIM可以共存于同一张UICC卡中。
除了其它信息外,USIM包括下列信息:
◆国际移动用户标识(IMSI,International Mobile Subscriber Identity):IMSI是分配给每个用户的唯一标识,该标识对用户来说是不可见的,而对网络来说是可见的。IMSI作为用户标识用于鉴权目的。在IP多媒体子系统(IMS,IP Multimedia Subsystem)中其私有用户标识等价于IMSI。
◆移动用户ISDN号码(MSISDN,Mobile Subscriber ISDN Number):在该域中存储了分配给用户的一个或者多个电话号码。在IMS中其公共用户标识等价于MSISDN。
◆加密密钥(CK,Cipher Key)和完整性密钥(IK,Integrity Key):这些密钥用于空中接口中数据的加密和完整性保护。USIM单独存储在电路域和分组域使用的密钥。
◆短消息(SMS,Short Message Service):USIM可以存储短消息以及相关的数据,例如发送者、接收者、状态等。
◆短消息参数:该域用于存储与SMS业务有关的配置数据,例如SMS中心地址、支持的协议等等。
◆多媒体消息业务(MMS,Multimedia Message Service)用户连接性参数:该域用于存储与MMS业务相关的配置数据,例如MMS服务器地址、MMS网关地址。
◆MMS用户优选信息:该域用于存储与MMS业务有关的用户优选信息,例如发送报告标志、优先级、到期信息等。
USIM卡和SIM卡相比有如下特点:
◆相对于SIM卡的单向鉴权(网络鉴权用户),USIM卡鉴权机制采用双向鉴权(除了网络鉴权用户外,用户也鉴权网络),有很高的安全性。
◆于SIM卡电话薄相比,USIM卡电话薄中每个联系人可以对应多个号码或者昵称。
◆相对SIM卡机卡接口速率,USIM卡机卡接口速率大大提高(230kbps)。
◆相对SIM卡对逻辑应用的支持,USIM可以同时支持4个并发逻辑应用。
23 3GPP IMS中的ISIM
在UICC中还可以实现ISIM应用(参阅3GPP TS 31103)。ISIM仅用于3GPP IMS系统中。它包括了在IMS系统中用于用户标识、用户鉴权和终端配置的有关参数。ISIM可以跟单独与SIM或USIM共存于一张UICC卡上,当然也可以同时与SIM和USIM共存于一张UICC卡上。
在ISIM中包括的主要参数有:
◆私有用户标识(Private User Identity):在ISIM中只能有一个私有用户标
◆公共用户标识(Public User Identity):在ISIM中可以存储一个或者多个公共用户标识的SIP(Session Initiation Protocol) URI。
◆归属网络域URI:ISIM中存储了包括归属网络域名的SIP URI,用于在注册过程中找到其归属网络的地址。在ISIM中只能存储一个归属网络域名URI。
◆长期加密(Long Term Secret):用于鉴权目的,用于计算终端和网络之间使用的完整性密钥和加密密钥。IMS终端利用完整性密钥来保护IMS终端和代理呼叫会话控制功能(P-CSCF,Proxy-Call Session Control Function)之间SIP信令的完整性。如果信令需要保密,那么IMS终端将利用加密密钥来对IMS终端和P-CSCF之间的SIP信令进行加密和解密。
除了ISIM外,使用USIM也可以访问3GPP IMS网络,但是需要对终端的软件进行适当的修改。由于SIM应用的安全等级较低,所以3GPP IMS系统不允许通过SIM来访问。
24 小结
目前UICC卡一般同时包括USIM和SIM两个模块,此时称为复合USIM卡(它可以兼容GSM终端和WCDMA终端),如果UICC中只包括USIM模块,那么称为纯USIM卡。
WCDMA终端在机卡接口上具备后向兼容性,兼容USIM卡(复合USIM卡和纯USIM卡)和GSM的SIM卡。
GSM终端兼容GSM的SIM卡和WCDMA的复合USIM卡,不兼容纯USIM卡。
WCDMA双模终端无论插入SIM卡或者USIM卡(复合USIM卡或者纯USIM卡)都可以接入GSM无线网络或者WCDMA无线网络。
GSM终端插入SIM卡或复合USIM卡只能接入GSM无线网络。
SIM卡可以应用于GSM、WCDMA、TD-SCDMA系统中。
USIM卡可以应用于GSM、WCDMA、TD-SCDMA系统中。
如果用户想使用IMS业务,那么在UICC卡中必须同时包括USIM和ISIM,如果只有USIM的话,可以通过修改终端中的软件来实现对IMS的访问(Release 5),在将来的标准中不排除在UICC卡中只需要ISIM即可访问IMS。
3 WCDMA和GSM的空中接口
WCDMA是从GSM系统演进而来,它们使用相同的核心网,但是其空中接口部分却有巨大差别,图2是WCDMA R4网络结构图,从图中可以看出GERAN和UTRAN公用同样的核心网。
表1列举了WCDMA和GSM在空中接口上一些最主要的差别:
表1 WCDMA和GSM空中接口关键参数对比
 

WCDMA

GSM
多址方式

CDMA

TDMA
载波带宽

5MHz

200kHz
调制方式

QPSK(前向)、BPSK(反向)

GMSK
分集方式

多径分集(RAKE接收机)

慢跳频
频率复用因子

1

1~18
语音编码

AMR

RPE-LTP-LPC
信道编码

卷积码、Turbo码

卷积码
31 多址方式
从表中可以看出WCDMA采用码分多址方式,用户和信道都是通过不同的码子来区分,也就是说不同的用户可以在相同的频率、相同的时隙中同时进行通信。GSM系统采用时分多址方式,用户和信道是通过不同的时隙来区分,也就是说在某一时刻,一个时隙只能分配给一个用户使用。
在WCDMA中分别用到了信道化码和扰码,其信道化码采用正交可变扩频因子(OVSF,Orthogonal Variable Spreading Factor)来实现,OVSF具有很好的互相关性,即不同码子之间是完全正交的。而其扰码则通过伪随机序列来实现,伪随机序列具有良好的自相关性,即同步时会有很大的峰值。
32 载波带宽
在WCDMA中其扩频码片速率是384Mbps,所以经过调制后其信号带宽为5MHz。WCDMA是码分多址(CDMA,Code Division Multiple Access)频分双工(FDD,Frequency Division Duplex)系统,所以上下行总共占用10MHz带宽。这也是WCDMA称为宽带CDMA的原因。对GSM来说,信息经过信道编码后的最终速率为2708Kbps,经过高斯最小移频键控(GMSK,Gaussian Minimum Shift Keying)后其信号带宽为200KHz,GSM是时分多址(TDMA,Time Division Multiple Access)频分双工系统,所以上下行总共占用400KHz的带宽。
33 调制方式
WCDMA系统采用了二进制移相键控(BPSK,Binary Phase Shift Keying)和四进制移相键控(QPSK,Quadrature Phase Shift Keying),对于BPSK来说就是将每个比特(0或者1)映射成相位0或者π,而QPSK则将两个比特分别映射成相位0、π/4、π/2、3π/4。此时调制信号的频率保持不变。
GSM系统采用的是GMSK调制方式,GMSK属于连续相位调制,是在MSK调制之前加入高斯滤波器,其目的是使调制信号的主瓣滚降的更快。该调制信号的频率是变化的。
34 分集方式
分集(Diversity)是为了提高通信系统的可靠性。在WCDMA系统中,利用CDMA固有的抗多径衰落能力,将从不同方向反射过来的多径信号通过RAKE接收机进行最大比合并(MRC,Maximal Ratio Combining),从而将本来对通信可靠性有害(多径信号会造成多径衰落,即频率选择性衰落)的多径信号变成对通信有益的信号。
在GSM系统中采用了慢跳频技术,通俗点说就是将信息分别在不同的频率上进行传输,这样便可以克服由于某一频率一直处于深衰落对信号的影响。
35 语音编码和信道编码
语音编码和信道编码一直是信息论中研究的重点,语音编码就是在可以听懂的基础上编出尽可能低的比特速率。而信道编码是通过增加冗余比特从而保证信息传输的可靠性。
WCDMA系统中的语音编码器采用的是自适应多速率(AMR,Adaptive Multi-Rate)编码技术。WCDMA系统中的信道编码包括卷积码和Turbo(1993年提出)码,Turbo码由于具有较大的交织深度(导致传输延时增加)和超强纠错能力,所以通常用在数据通信环境下。
GSM的语音编码器采用的是规则脉冲激励长期预测线性预测编码(RPE-LTP-LPC,Regular Pulse Excited-Long Term Prediction-Linear Predictive Coding)技术。GSM中的信道编码采用的是卷积码。
36 小结
通过上面的叙述,可以得出很简单的结论,即当终端处于某种蜂窝网络的覆盖范围内时,终端要想正常工作,其前提条件就是终端必须跟基站必须是同一制式。也就是说当终端处于WCDMA基站覆盖时,该终端必须是WCDMA终端(WCDMA/GSM双模终端当然没有问题);当处于GSM基站覆盖时,该终端必须是GSM终端(WCDMA/GSM双模终端显然没有问题)。
4 WCDMA和GSM实现国际漫游的两种方式
目前WCDMA和GSM之间实现国际漫游的方式主要有两种:一是在国内办理租机租卡呼转漫游业务;二是自备双模终端到国外实现GSM和WCDAM之间的自动漫游。下面我们将分别以中国和日本之间的GSM、WCDMA国际漫游为例进行分析。
41 租机租卡呼转漫游
当中国GSM用户要漫游到日本时,由于日本是WCDMA网络,所以用户在国内开通了租机租卡呼转漫游业务,在营业厅租用的手机是日本的WCDMA手机,同时将用户的GSM手机号呼转到租用的手机上,这种呼转属于无条件呼转。
假设用户A要去日本,办理了租机租卡呼转漫游业务,其号码呼转到了终端B上,当国内用户C呼叫用户A。
 (1) MSC接收到被叫用户号码A后,通过7号信令网向A的HLR发送send_routing_info消息。
 (2)在HLR中可以看到用户A已经呼转到了终端B上,此时HLR通过send_routing_info消息将B号码返回给MSC。
 (3) MSC分析得知该号码是国际号码后通过向TSMC发送IAM消息,并通过ISC、国际话务中转商送达日本TMSC。
 (4) 日本TMSC收到IAM消息后,通过7号信令向终端B的HLR发送send_routing_info消息。
 (5)终端B的HLR已知目前为终端B提供服务的MSC,随后向该MSC发送provide_roaming_num消息获取终端B的MSRN。
 (6) MSC将终端B的MSRN通过provide_roaming_num_ack消息返回给HLR。
 (7) 随后终端B的HLR通过send_routing_num_ack消息将B的MSRN发送给TMSC。
 (8) 获知了终端B的MSRN后,TMSC便通过IAM消息进行随后的话务接续。
同理可得当日本WCDMA用户漫游到中国GSM网络时,也可以在其国内办理该业务。
42 自备WCDMA终端实现GSM到WCDMA的国际漫游
GSM用户通过WCDMA终端访问日本WCDMA网络的简单鉴权、加密过程:
中国用户到达日本开机后,首先发起位置更新过程,日本WCDMA MSC收到中国用户的位置更新请求后,便通过国际7号信令网和中国7号信令网向用户的HLR发起位置更新请求。随后HLR通过鉴权请求消息向日本WCDMA MSC发送Triplets(Kc,RAND,SRES)。此时的鉴权过程跟GSM系统的鉴权一样,即MSC将Kc和RAND下发给终端后,终端利用RAND、Ki通过A3算法得到SERS,并将该SERS返回给MSC,MSC将比较HLR送来的SERS跟终端送来的是否一致。若一致则鉴权通过,HLR会向日本WCDMA MSC/VLR插入中国用户的相关数据,同时将这些信息从旧MSC/VLR中删除。若不一致,则用户被拒绝。
其实在鉴权完毕后紧接着应该进行空中接口加密过程,不过我们国内没有采用。在GSM系统中空中接口的加密是通过Kc和A5算法来完成的,然而当用户漫游到日本后,如上图,对于WCDMA终端和WCDMA MSC都会按照相应的转换函数将收到的Kc转换成CK、IK,从而实现加密和完整性保护,可以看出其传输的安全性提高了。
43 自备GSM终端实现WCDMA到GSM的国际漫游
日本的WCDMA用户漫游到中国后只需更换一部GSM终端就可以了,无需换USIM复合卡。如果用户使用的是WCDMA/GSM双模终端则可以实现自动漫游。我们简单的看看该场景中的鉴权和加密过程。
当日本用户漫游到中国开机后,首先进行位置更新过程,中国GSM MSC收到日本用户的位置更新请求后,便通过7号信令网向用户的HLR发起位置更新请求。注意此时日本的HLR是WCDMA HLR,其存储的是鉴权五元组(Quintets)(RAND,CK,IK,XRES,AUTN),它必须将其转换为三元组(Triplets),即通过CK、IK计算出Kc,通过XRES计算出SERS。随后HLR通过鉴权请求消息向中国MSC发送Triplets(Kc,RAND,SRES)。MSC收到Triplets后通过GSM BSS将RAND发送给GSM终端,终端利用该RAND可以计算出CK、IK和RES,随后终端利用不同的转换函数分别将CK、IK转换成KC,将RES转换成SRES。然后终端将SERS返回给MSC,MSC将从HLR中收到的SRES和从终端收到的SRES进行比较,若一致,则鉴权通过,HLR将用户相关信息插入到GSM MSC/VLR中,并从旧的VLR中删除用户相关信息。完成位置更新过程。若比较结果不一致,则拒绝用户。虽然我国GSM系统空中接口没有进行加密,其实在规范中鉴权完毕后由加密过程,即终端和GSM BSS之间通过Kc进行加密 *** 作。
5 结束语
通过上面的分析我们可以看出由于WCDMA和GSM有着相同的核心网,所以只要运营商相互开通WCDMA和GSM之间的业务,用户只需要更换原来的终端就可以实现自动漫游,不同的是在空中接口加密过程中需要对鉴权组中的参数进行相应的转换以适合空中接口的需要。

3GPP的目标是实现由2G网络到3G网络的平滑过渡,保证未来技术的后向兼容性,支持轻松建网及系统间的漫游和兼容性。 其职能: 3GPP主要是制订以GSM核心网为基础,UTRA(FDD为W-CDMA技术,TDD为TD-CDMA技术)为无线接口的第三代技术规范。
目录
1第三代
▪ 简介
▪ 成员
▪ 中国与3GPP
2标准版本
▪ 3GPP版本
▪ 版本变化
1第三代编辑
简介
The 3rd Generation Partnership Project(3GPP)
是领先的3G技术规范机构,是由欧洲的ETSI,日本的ARIB和TTC,韩国的TTA以及美国的T1在1998年底发起成立的,旨在研究制定并推广基于演进的GSM核心网络的3G标准,即WCDMA,TD-SCDMA,EDGE等。中国无线通信标准组(CWTS)于1999年加入3GPP。
成员
3GPP的会员包括3类:组织伙伴,市场代表伙伴和个体会员。3GPP的组织伙伴包括欧洲的ETSI、日本的ARIB、日本的TTC、韩国的TTA美国的T1和中国通信标准化协会六个标准化组织。3GPP市场代表伙伴不是官方的标准化组织,它们是向3GPP提供市场建议和统一意见的机构组织。TD-SCDMA 技术论坛的加入使得3GPP 合作伙伴计划市场代表伙伴的数量增加到6个,其它包括:GSM 协会,UMTS论坛,IPv6论坛,3G美国(3G Americas),全球移动通信供应商协会(The Global Mobile Suppliers Association)。
中国与3GPP
中国无线通信标准研究组(CWTS)于1999年6月在韩国正式签字同时加入3GPP和3GPP2, 成为这两个当前主要负责第三代伙伴项目的组织伙伴。在此之前,我国是以观察员的身份参与这两个伙伴的标准化活动。
2标准版本编辑
3GPP版本
为了满足新的市场需求,3GPP规范不断增添新特性来增强自身能力。为了向开发商提供稳定的实施平台并添加新特性,3GPP使用并行版本体制,所有版本如下:
1、99版本
最早出现的各种第三代规范被汇编成最初的99版本,于2000年3月完成,后续版本不再以年份命名。99版本的主要内容为:
新型WCDMA无线接入。引入了一套新的空中接口标准,运用了新的无线接口技术,即WCDMA技术,引入了适于分组数据传输的协议和机制,数据速率可支持144、384Kbit/s及2Mbit/s。
其核心网仍是基于GSM的加以演变的WCDMA核心网。
3GPP标准为业务的开发提供了三种机制,即针对IP业务的CAMEL功能、开放业务结构(简称OSA)和会话启始协议(简称SIP),并在不同的版本中给出了相应的定义。99版本对GSM中的业务有了进一步的增强,传输速率、频率利用率和系统容量都大大提高。99版本在业务方面除了支持基本的电信业务和承载业务外,也可支持所有的补充业务,另外它还支持基于定位的业务(LCS)、号码携带业务(MNP)、64kbit/s电路数据承载、电路域多媒体业务以及开放业务结构等。
2、Release4
目前最新的全套3GPP规范被命名为Release4(R4)。R4规范在2001年3月“冻结”,意为自即日起对R4只允许进行必要的修正而推出修订版,不再添加新特性。所有R4规范均拥有一个“4xy”形式的版本号。
R4无线网络技术规范中没有网络结构的改变,而是增加了一些接口协议的增强功能和特性,主要包括:低码片速率TDD,UTRA FDD直放站,Node B同步,对Iub和Iur上的AAL2连接的QoS优化,Iu上无线接入承载(RAB)的QoS协商,Iur和Iub的无线资源管理(RRM)的优化,增强的RAB支持,Iub、Iur和Iu上传输承载的修改过程,WCDMA1800/1900以及软切换中DSCH功率控制的改进。
R4在核心网上的主要特性为:
电路域的呼叫与承载分离:将移动交换中心(MSC)分为MSC服务器(MSC Server)和媒体网关(MGW),使呼叫控制和承载完全分开。
核心网内的七号信令传输第三阶段(Stage 3):支持七号信令在两个核心网络功能实体间以基于不同网络的方式来传输,如基于MTP,IP和ATM网传输。
R4在业务上对99版本做了进一步的增强,可以支持电路域的多媒体消息业务,增强紧急呼叫业务、MexE、实时传真(支持3类传真业务)以及由运营商决定的阻断(允许运营商完全或根据要求在分组数据协议建立阶段阻断用户接入)。
3、Release5
如果规范在冻结期后发现需要添加新特性,则制定一个新版本规范。新特性正在添加到Release5(R5)中。第一个R5的版本已在2002年3月冻结,R5形成全套规范之后即可在2002年6月完全冻结。未能及时添加到R5中的新特性将包含在后续版本R6中。所有R5规范均拥有一个“5xy”形式的版本号。
3GPP
R5将完成对IP多媒体子系统(IMS)的定义,如路由选取以及多媒体会话的主要部分。R5的完成将为转向全IP网络的运营商提供一个开始建设的依据。
R5计划的主要特性有:
UTRAN中的IP传输、高速下行分组数据业务的接入(HSDPA)、混合ARQII/III、支持RAB增强功能、对Iub/Iur的无线资源管理的优化、UE定位增强功能、相同域内不同RAN节点与多个核心网节点的连接以及其它原有R5的功能。
R5在核心网方面的主要特性包括:用M3UA(SCCP-User Adaptation)传输七号信令、IMS业务实现、紧急呼叫增强功能以及网络安全性的增强。另外,Rel-5在网络接口上可支持UTRAN至GERAN的Iu和Iur-g接口,从而实现WCDMA与EDGE的互通。
在业务应用上,R5主要准备在以下几方面加强:支持基于IP的多媒体业务、CAMEL Phase4、全球文本电话(GTT)以及Push业务。
由于IP多媒体子系统是R5的一个主要特性,3GPP技术标准组对其进行了多次讨论与研究。IMS定位在完成现有电路域未能为运营商提供的多媒体业务,而不是代替现已成熟的电路域业务,从而更好地兼容99版本来完成系统平滑演进的过程。3GPP的标准化进程实际是99版本、R4和R5并行的过程,完善99版本和R4需要占用大量的时间。为避免重复制定某项标准并考虑与固定网标准的统一,3GPP决定有关IMS的部分标准将直接采用IETF和ITU-T的标准。
4、Release6
R6版本刚刚开始研究,其网络架构与R5相同,主要进行业务研究以及与其他网络互通研究。在R6又引入了HSUPA。
欲详细了解3GPP技术规范各系统版本的主要内容(包括R7、R8、R9)请进入。
5Release7
本阶段更多的考虑了固定方面的特性要求,加强了对固定、移动融合的标准化制订。
6Release8
3GPP在R8阶段开始研究qk务控制和由IMS域实现的IMS集中业务。该业务最大的亮点就在于可以为小同接入域(CS域、PS域)的用户提供一致和连续的业务体验,技术的关键点在于如何使cs域接入的用户使用IMS业务。
在IMS集中业务的架构中,SCC AS除了作为UE的SIP uA进行IMS会话的建立和控制,最重要的足为被叫用户提供接入域选择的功能。SCC AS可以根据接入网和UE的能力、IMS注册状态、CS状态、运营商的策略等因素进行域选择。对于支持12和13接口的MSC Server,则应具备CS信令与IMS SIP互通的增强能力。
7Release9
3GPP将在R9中完成ICS LIE和SCC AS之间11接r]Stage3的研究工作,包括11接口的协议结构、采用11接Lj的功能实体的动作、ICS UE与SCC AS之间的交互、补充业务的控制流程等。[1]
版本变化
对于3GPP2来讲,版本也比较多,目前有Release 0、A和B三个版本,且这些版本也一直在不断更新。基于全IP的Release C也在研究中。
进行商用化准备的标准主要基于Release 0和Release A两个版本。这两个版本在2000年底和2001年初已经稳定。由于基于cdmaOne的现有标准和IETF的技术规范,标准成熟性较3GPP好。
但由于3GPP2在标准的一致性和开放性方面较3GPP弱,所以运营商和制造商对CDMA2000整个系统的版本的选择,也并不完全一致,给设备之间的互通和不同网络之间的漫游带来一些困难。
3GPP2从2000年开始研究cdma2000-1X的增强型技术1X/EV。2000年9月3GPP2完成了可支持峰值速率为24Mbps的cdma2000-1X的增强型技术1X/EV-DO(Data Only)的标准化。进而研究了支持5Mbps以上速率的1X/EV-DV(Data and Voice)标准。
3GPP2 Release
C是面向全IP的标准,与3GPP类似,3GPP2由于主要精力在完善现有的版本,Release C的进展缓慢。
3G peer protocol
是基于3G移动通信网络上的一种创建、传输、回放多媒体的标准。这种标准是基于MPEG-4编码技术的。市面上众多的MPEG-4标准只要支持3GPP这个标准都可以用于3G移动通信设备上。


欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/zz/13480251.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-08-15
下一篇 2023-08-15

发表评论

登录后才能评论

评论列表(0条)

保存