gpu服务器多不同显卡兼容性问题

gpu服务器多不同显卡兼容性问题,第1张

GPU基本不存在不兼容的问题。
只有主板与CPU限制GPU的功能。可以换个PIC-E插槽或者重新安装正确的显卡驱动试试看。根据我的个人经验 没有显卡和别的不兼容的,只有CPU性能低下成为瓶颈限制显卡性能发挥。
GPU服务器,简单来说,GPU服务器是基于GPU的应用于视频编解码、深度学习、科学计算等多种场景的快速、稳定、d性的计算服务,我们提供和标准云服务器一致的管理方式。出色的图形处理能力和高性能计算能力提供极致计算性能,有效解放计算压力,提升产品的计算处理效率与竞争力。

选择GPU服务器时首先要考虑业务需求来选择适合的GPU型号。在HPC高性能计算中还需要根据精度来选择,比如有的高性能计算需要双精度,这时如果使用P40或者P4就不合适,只能使用V100或者P100;同时也会对显存容量有要求,比如石油或石化勘探类的计算应用对显存要求比较高;还有些对总线标准有要求,因此选择GPU型号要先看业务需求。

GPU服务器人工智能领域的应用也比较多。在教学场景中,对GPU虚拟化的要求比较高。根据课堂人数,一个老师可能需要将GPU服务器虚拟出30甚至60个虚拟GPU,因此批量Training对GPU要求比较高,通常用V100做GPU的训练。模型训练完之后需要进行推理,因此推理一般会使用P4或者T4,少部分情况也会用V100。

综上所述,选择服务器时不仅需要考虑业务需求,还要考虑性能指标,比如精度、显存类型、显存容量以及功耗等,同时也会有一些服务器是需要水冷、降噪或者对温度、移动性等等方面有特殊的要求,就需要特殊定制的服务器。

欢迎了解更多:网页链接

NVSwitch是一种高速互连技术,可以在多个GPU之间实现高速数据传输。要在跨服务器之间使用NVSwitch,需要满足以下要求:

服务器需要安装支持NVSwitch技术的GPU卡,例如NVIDIA Tesla V100或A100。

服务器需要使用支持NVSwitch的技术,例如InfiniBand或以太网等进行物理互连。

服务器需要安装支持NVSwitch的驱动程序和软件包,例如CUDA和NCCL等。

具体而言,您可以使用以下步骤在跨服务器之间使用NVswitch:

使用支持NVSwitch的技术将多个服务器物理互连。

在服务器上安装和配置支持NVSwitch的驱动程序和软件包。

在不同的服务器上启动各自的GPU卡。

调用支持NVSwitch的CUDA函数和NCCL函数,以实现在跨服务器之间传输数据。

需要注意的是,使用NVSwitch进行跨服务器之间的GPU交互需要高带宽、低延迟互连技术,并且需要对网络拓扑进行调整。例如将GPU密集的任务聚集在具有高速InfiniBand网络的服务器上,以最大化NVSwitch的性能。

基本上价格就是根据配置和型号来的,配置越高价格越贵。在选择GPU的时候要考虑好自身的情况,根据自身的工作要求来选择型号和规格,也可以去电商网站上对比下价格。思腾合力你可以去了解下,我之前在京东上看过他们家产品,我觉得还不错,性价比挺好的。你可以去了解下。

深度学习GPU工作站/服务器硬件配置方案
I
市场上用于深度学习训练计算机大致情况如下:
(1)服务器/工作站(支持2、4、8块GPU架构):普遍存在噪音大,无法放置于办公环境,必须放到专门的机房,维护成本高,另外数据存储带宽、延迟、容量也不尽如意。
(2)分布式集群架构:性能强大,但是开发成本太高(太贵),是大多数科研单位及个人无法承受。
(3)组装电脑:这类特点是价格便宜,但是在散热和功率方面依然是普通家用/游戏电脑标准,稳定性巨差。
(4)大部分GPU计算机(服务器/工作站):重点都放在GPU卡数量上,似乎只要配上足够GPU卡,就可以了。
然而,机器硬件配置还需要整体均衡,不同的学习框架更需要不同GPU卡去适配。
主流学习框架
主流框架加速效能
上图是不同的DL框架加速效能(NVIDIA GP100为例),不同的框架并不是GPU越多效能就越高。
深度学习计算密集,所以需要一个快速多核CPU,对吧?!
听说深度学习有很多显卡就可以了,一个高速CPU可能是种浪费?!
搭建一个深度学习系统时,最糟糕的事情之一就是把钱浪费在并非必需的硬件上。
一个高性能且经济的深度学习系统所需的硬件到底要如何配置?!
一 深度学习计算特点与硬件配置分析:
深度学习计算特点
1数据存储要求
在一些深度学习案例中,数据存储会成为明显的瓶颈。做深度学习首先需要一个好的存储系统,将历史资料保存起来。
主要任务:历史数据存储,如:文字、图像、声音、视频、数据库等。
数据容量:提供足够高的存储能力。
读写带宽:多硬盘并行读写架构提高数据读写带宽。
接口:高带宽,同时延迟低。
传统解决方式:专门的存储服务器,借助万兆端口访问。
缺点:带宽不高,对深度学习的数据读取过程时间长(延迟大,两台机器之间数据交换),成本还巨高。
UltraLA解决方案:
将并行存储直接通过PCIe接口,提供最大16个硬盘的并行读取,数据量大并行读取要求高,无论是总线还是硬盘并行带宽,都得到加大提升,满足海量数据密集I/O请求和计算需要。
2 CPU要求
如今深度学习CPU似乎不那么重要了,因为我们都在用GPU,为了能够明智地选择CPU我们首先需要理解CPU,以及它是如何与深度学习相关联的,CPU能为深度学习做什么呢?当你在GPU上跑深度网络时,CPU进行的计算很少,但是CPU仍然需要处理以下事情:
(1)数据从存储系统调入到内存的解压计算。
(2)GPU计算前的数据预处理。
(3)在代码中写入并读取变量,执行指令如函数调用,创建小批量数据,启动到GPU的数据传输。
(4)GPU多卡并行计算前,每个核负责一块卡的所需要的数据并行切分处理和控制。
(5)增值几个变量、评估几个布尔表达式、在GPU或在编程里面调用几个函数——所有这些会取决于CPU核的频率,此时唯有提升CPU频率。
传统解决方式:CPU规格很随意,核数和频率没有任何要求。
UltraLA解决方案:
CPU频率尽量高
CPU三级缓存尽量大(有必要科普一下CPU缓存)
“这是个经常被忽视的问题,但是通常来说,它在整个性能问题中是非常重要的一部分。CPU缓存是容量非常小的直接位于CPU芯片上的存储,物理位置非常接近CPU,能够用来进行高速计算和 *** 作。CPU通常有缓存分级,从小型高速缓存(L1,L2)到低速大型缓存(L3,L4)。作为一个程序员,你可以将它想成一个哈希表,每条数据都是一个键值对(key-value-pair),可以高速的基于特定键进行查找:如果找到,就可以在缓存得值中进行快速读取和写入 *** 作;如果没有找到(被称为缓存未命中),CPU需要等待RAM赶上,之后再从内存进行读值——一个非常缓慢的过程。重复的缓存未命中会导致性能的大幅下降。有效的CPU缓存方案与架构对于CPU性能来说非常关键。深度学习代码部分——如变量与函数调用会从缓存中直接受益。”
CPU核数:比GPU卡数量大(原则:1核对应1卡,核数要有至少2个冗余)。
3 GPU要求
如果你正在构建或升级你的深度学习系统,你最关心的应该也是GPU。GPU正是深度学习应用的核心要素——计算性能提升上,收获巨大。
主要任务:承担深度学习的数据建模计算、运行复杂算法。
传统架构:提供1~8块GPU。
UltraLA解决方案:
数据带宽:PCIe8x 30以上。
数据容量:显存大小很关键。
深度学习框架匹配:CPU核-GPU卡 1对1。
GPU卡加速:多卡提升并行处理效率。
4内存要求
至少要和你的GPU显存存大小相同的内存。当然你也能用更小的内存工作,但是,你或许需要一步步转移数据。总而言之,如果钱够,而且需要做很多预处理,就不必在内存瓶颈上兜转,浪费时间。
主要任务:存放预处理的数据,待GPU读取处理,中间结果存放。
UltraLA解决方案:
数据带宽最大化:单Xeon E5v4 4通道内存,双XeonE5v4 8通道内存,内存带宽最大化。
内存容量合理化:大于GPU总显存。
说了那么多,到底该如何配置深度学习工作站,下面是干货来袭~
二 深度学习工作站介绍与配置推荐
1 UltraLABGX370i-科研型
UltraLAB GX370i-科研型
硬件架构:4核47GHz~50GHz+4块GPU+64GB内存+4块硬盘(最大)
机器特点:高性价比,最快预处理和GPU超算架构
数据规模:小规模
2 UltraLABGX490i-高效型
硬件架构:配置10核45GHz+4块GPU+128GB+4块硬盘(最大)
机器特点:较GX360i,CPU核数和内存容量提升
数据规模:中小规模
UltraLAB GX490i基准配置
3 UltraLABGX490M-高性能型
硬件架构:配置6核45GHz/8核43GHz/10核43GHz+最大7块GPU+256GB+20盘位并行存储
机器特点:GPU数量支持到7块,支持海量数据并行存储
数据规模:中大规模
4 UltraLABGX620M-超级型
UltraLAB GX620M
硬件架构:双Xeon可扩展处理器(最大56核,最高38GHz)+最大9块GPU+20盘位并行存
机器特点:目前最强大的CPU+GPU异构计算
数据规模:建模与仿真计算、高性能科学计算、机器/深度学习
UltraLAB GX620M基准配置
UltraLAB深度学习工作站特点:
(1)种类丰富: GX370i(1C4G), GX490i(1C4G) --科研型,GX490M(1C7G)、GX620M(2C9G)--超级型。
(2)性能特点:超高频+多GPU+海量高速存储+静音级=最完美强大DL硬件平台。
(3)应用平台:完美支持TensorFlow,Caffe,Torch,DIGITS,


欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/zz/13498711.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-08-19
下一篇 2023-08-19

发表评论

登录后才能评论

评论列表(0条)

保存